精英家教网 > 高中数学 > 题目详情
已知z为虚数,且|z|=
5
,z2+2
.
z
为实数,若w=z+ai(i为虚数单位,a∈R)且z虚部为正数,0≤a≤1,求|w|的取值范围.
分析:设z=x+yi(x、y∈R,y≠0),由条件|z|=
5
,z2+2
.
z
为实数求出复数z,在代入w=z+ai中,表示出|w|,即可求范围.
解答:解:设z=x+yi(x、y∈R,y≠0)
z2+2
.
z
=(x2+y2+2x)+(2xy-2y)i

z2+2
.
z
∈R,∴2xy-2y=0,
∵y≠0,∴x=1
又|z|=
5
,即x2+y2=5,∴y=±2,∴z=1±2i.
∵z虚部为正数,∴y=2,∴z=1+2i,
∴w=1+2i+ai
∴|w|=
1+(a+2)2

a∈[0,1]
∴|w|∈[
5
10
]
点评:本题考查复数的概念、运算及复数的模等知识,设z=x+yi(x、y∈R)是复数问题中最常用的思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z为虚数,且|z|=
5
,若z2-2
.
z
为实数.
(1)求复数z;
(2)若z的虚部为正数,且ω=z+4sinθ•i(i为虚数单位,θ∈R),求ω的模的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z为虚数,且|2z+15|=
3
|z+10|

(1)求|z|;(2)设u=(3-i)z,若u在复平面上的对应点在第二、四象限的角平分线上,求复数z;(3)若z2+2
.
z
为实数,且z恰好为实系数方程x2+px+q=0的两根,试写出此方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知z为虚数,且|z|=
5
,若z2-2
.
z
为实数.
(1)求复数z;
(2)若z的虚部为正数,且ω=z+4sinθ•i(i为虚数单位,θ∈R),求ω的模的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习精练:复数(解析版) 题型:解答题

已知z为虚数,且|z|=,z2+2为实数,若w=z+ai(i为虚数单位,a∈R)且z虚部为正数,0≤a≤1,求|w|的取值范围.

查看答案和解析>>

同步练习册答案