精英家教网 > 高中数学 > 题目详情
已知双曲线与点P(1,2),过P点作直线l与双曲线交于A、B两点,若P为A、B中点.
(1)求直线AB的方程;
(2)若P的坐标为(1,1),这样的直线是否存在,如存在,求出直线方程,若不存在,说明理由.
【答案】分析:(1)已知直线上一点P(1,2),求直线的方程,关键求直线的斜率,由中点公式得:(x1+x2)=2,y1+y2=4,
可得KAB,从而点斜式写出直线方程.
(2)先假设直线l存在,依据条件去求,能求出符合条件的直线l方程,则直线l真正存在,否则,直线l不存在.
解答:解:(1)设直线l与双曲线交点A(x1,y1)、B(x2,y2),代入方程得:
x12-=1     ①,x22-=1     ②,
①-②得:(x1-x2)•(x1+x2) _=0.
∵P为A、B中点,由中点公式得:(x1+x2)=2,y1+y2=4,
=1=KAB,∴直线l方程为:y-2=1•(x-1),即:x-y+1=0.
(2)假设直线l存在,设直线l与双曲线交点A(x1,y1)、B(x2,y2),由(1)知,
(x1-x2)•(x1+x2) _=0
由中点公式得:(x1+x2)=2,y1+y2=2,=2=KAB
∴直线l方程为:y-1=2( x-1 ),即:2x-y-1=0.
但把求出的直线2x-y-1=0代入双曲线可得 2x2-4x+3=0,由于判别式△=16-24=-8<0,
故满足条件的直线不存在.
点评:本题主要考查直线的方程的方法,直线和圆锥曲线的位置关系,注意设而不求得解题思想的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线数学公式与点P(1,2),过P点作直线l与双曲线交于A、B两点,若P为A、B中点.
(1)求直线AB的方程;
(2)若P的坐标为(1,1),这样的直线是否存在,如存在,求出直线方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与点P(1,2),过P点作直线l与双曲线交于A,B两点,若PAB的中点.

(1)求直线AB的方程;

(2)若Q(1,1),证明不存在以Q为中点的弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与点P(1,2),过P点作直线l与双曲线交于AB两点,若PAB的中点.

(1)求直线AB的方程;

(2)若Q(1,1),证明不存在以Q为中点的弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与点P(1,2),过P点作直线l与双曲线交于AB两点,若PAB的中点.

(1)求直线AB的方程;

(2)若Q(1,1),证明不存在以Q为中点的弦.

查看答案和解析>>

同步练习册答案