精英家教网 > 高中数学 > 题目详情
如图,已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足PQ=PA,
(1)求实数a,b之间满足的关系式;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径取最小值时⊙P的方程。

解:(1)连接OP,
∵Q为切点,
∴PQ⊥OQ,


化简得:2a+b-3=0。
(2)由(1)知b=-2a+3,

故当时,线段PQ长的最小值为
(3)设⊙P的半径为R,
∵⊙P与⊙O有公共点,且⊙O的半径为1,
,即

故当
此时
故当半径取最小值时,⊙P的方程为:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆O:x2+y2=1,O为坐标原点.
(1)边长为
2
的正方形ABCD的顶点A、B均在圆O上,C、D在圆O外,当点A在圆O上运动时,C点的轨迹为E.
①求轨迹E的方程;
②过轨迹E上一定点P(x0,y0)作相互垂直的两条直线l1,l2,并且使它们分别与圆O、轨迹E相交,设l1被圆O截得的弦长为a,设l2被轨迹E截得的弦长为b,求a+b的最大值.
(2)正方形ABCD的一边AB为圆O的一条弦,求线段OC长度的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y 轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn
(Ⅰ) 求a2与an
(Ⅱ) 求Sn,并证明Sn
13

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,且M在第一象限,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案