精英家教网 > 高中数学 > 题目详情
如图所示,已知M 是双曲线上的一点,且MF1⊥MF2,F1,F2是双曲线的两个焦点,求△MF1F2的面积.
解:符合条件的点M 应该有4 个,分别位于第一、二、三、四象限,但无论哪种情况,△MF1F2的面积都相等,不妨设点M 在第一象限,
由已知得,c2=40+9=49.  
根据双曲线定义,得|MF1|-|MF2|=2a=
即|MF1|2+|MF2|2-2|MF1|·|MF2|=160.    ①
又∵ MF1⊥MF2,
∴|MF1|2+|MF2|2=|F1F2|2 ,
即|MF1|2 +|MF2|2=(2c)2=196.    ②
由①②,得|MF1|·|MF2|=9,
∴△MF1F2的面积是9.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、如图所示,已知AP是圆O的切线,P为切点,AC是圆O的割线,与圆O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.则∠OAM+∠APM的大小为
90°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一简单组合体ABCDEF如图所示,已知M、N、P分别为AF,BD,EF的中点.
(1)求证:MN∥平面BCF;
(2)求证:AP⊥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点,平面PAD∩平面PBC=l.
(1)求证:l∥BC.
(2)MN与平面PAD是否平行?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知ABCD是正方形,边长为2,PD⊥平面ABCD.
(1)若PD=2,①求异面直线PC与BD所成的角,②求二面角D-PB-C的余弦值;
③在PB上是否存在E点,使PC⊥平面ADE,若存在,确定点E位置,若不存在说明理由;
(2)若PD=m,记二面角D-PB-C的大小为θ,若θ<60°,求m的取值范围.

查看答案和解析>>

同步练习册答案