精英家教网 > 高中数学 > 题目详情
18.如图,已知M(x0,y0)是椭圆C:$\frac{x^2}{6}+\frac{y^2}{3}=1$上的任一点,从原点O向圆M:${({x-{x_0}})^2}+{({y-{y_0}})^2}=2$作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问B=OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

分析 (1)由题意得 $\frac{{|{k_1}{x_0}-{y_0}|}}{{\sqrt{1+k_1^2}}}=\sqrt{2}$,从而化简可得$(x_0^2-2)k_1^2-2{x_0}{y_0}{k_1}+y_0^2-2=0$,同理可得$(x_0^2-2)k_2^2-2{x_0}{y_0}{k_2}+y_0^2-2=0$;从而可知k1,k2是方程$(x_0^2-2)k_{\;}^2-2{x_0}{y_0}k+y_0^2-2=0$的两个不相等的实数根,从而可得${k_1}•{k_2}=\frac{y_0^2-2}{x_0^2-2}$,再由$y_0^2=3-\frac{1}{2}x_0^2$证明即可;
(2)可判断B是定值,定值为9,证明方法有两种:(法一):按斜率是否存在分类讨论,(i)当直线OP、OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),从而联立方程可得${x_1}^2+{y_1}^2=\frac{{6(1+{k_1}^2)}}{{1+2{k_1}^2}}$,${x_2}^2+{y_2}^2=\frac{{6(1+{k_2}^2)}}{{1+2{k_2}^2}}$,从而化简$O{P^2}+O{Q^2}={x_1}^2+{y_1}^2+{x_2}^2+{y_2}^2$=$\frac{{6(1+{k_1}^2)}}{{1+2{k_1}^2}}+\frac{{6(1+{k_2}^2)}}{{1+2{k_2}^2}}$=$\frac{{9+18{k_1}^2}}{{1+2{k_1}^2}}$=9;(ii)当直线OP、OQ落在坐标轴上时,显然有B=9.(法二):按斜率是否存在分类讨论,(i)当直线OP、OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),由${k_1}{k_2}=-\frac{1}{2}$可得$y_1^2y_2^2=\frac{1}{4}x_1^2x_2^2$,再由方程化简可得$x_1^2+x_2^2=6$,从而解得.

解答 解:(1)证明:∵直线OP:y=k1x以及OQ:y=k2x与圆M相切,
∴$\frac{{|{k_1}{x_0}-{y_0}|}}{{\sqrt{1+k_1^2}}}=\sqrt{2}$,
化简得:$(x_0^2-2)k_1^2-2{x_0}{y_0}{k_1}+y_0^2-2=0$
同理:$(x_0^2-2)k_2^2-2{x_0}{y_0}{k_2}+y_0^2-2=0$,
∴k1,k2是方程$(x_0^2-2)k_{\;}^2-2{x_0}{y_0}k+y_0^2-2=0$的两个不相等的实数根,
∴${k_1}•{k_2}=\frac{y_0^2-2}{x_0^2-2}$,
∵点M(x0,y0)在椭圆C上,
∴$\frac{{{x_0}^2}}{6}+\frac{{{y_0}^2}}{3}=1$,即$y_0^2=3-\frac{1}{2}x_0^2$,
∴${k_1}{k_2}=\frac{{1-\frac{1}{2}x_0^2}}{x_0^2-2}=-\frac{1}{2}$,为定值.
(2)B是定值,定值为9,证明如下,
法一:(i)当直线OP、OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),
联立$\left\{\begin{array}{l}y={k_1}x\\ \frac{x^2}{6}+\frac{y^2}{3}=1\end{array}\right.$解得$\left\{\begin{array}{l}{x_1}^2=\frac{6}{{1+2{k_1}^2}}\\{y_1}^2=\frac{{6{k_1}^2}}{{1+2{k_1}^2}}.\end{array}\right.$,
故${x_1}^2+{y_1}^2=\frac{{6(1+{k_1}^2)}}{{1+2{k_1}^2}}$,
同理得,${x_2}^2+{y_2}^2=\frac{{6(1+{k_2}^2)}}{{1+2{k_2}^2}}$,
∵${k_1}{k_2}=-\frac{1}{2}$,
∴$O{P^2}+O{Q^2}={x_1}^2+{y_1}^2+{x_2}^2+{y_2}^2$
=$\frac{{6(1+{k_1}^2)}}{{1+2{k_1}^2}}+\frac{{6(1+{k_2}^2)}}{{1+2{k_2}^2}}$
=$\frac{{6(1+{k_1}^2)}}{{1+2{k_1}^2}}+\frac{{6(1+{{(-\frac{1}{{2{k_1}}})}^2})}}{{1+2{{(-\frac{1}{{2{k_1}}})}^2}}}$
=$\frac{{9+18{k_1}^2}}{{1+2{k_1}^2}}$=9;
(ii)当直线OP、OQ落在坐标轴上时,显然有B=9;
综上所述,B=9.
法二:(i)当直线OP、OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),
∵${k_1}{k_2}=-\frac{1}{2}$,
∴$y_1^2y_2^2=\frac{1}{4}x_1^2x_2^2$,
∵P(x1,y1),Q(x2,y2)在椭圆C上,
∴$\left\{\begin{array}{l}\frac{x_1^2}{6}+\frac{y_1^2}{3}=1\\ \frac{x_2^2}{6}+\frac{y_2^2}{3}=1\end{array}\right.$,即 $\left\{\begin{array}{l}y_1^2=3-\frac{1}{2}x_1^2\\ y_2^2=3-\frac{1}{2}x_2^2\end{array}\right.$,
∴$(3-\frac{1}{2}x_1^2)(3-\frac{1}{2}x_2^2)=\frac{1}{4}x_1^2x_2^2$,整理得$x_1^2+x_2^2=6$,
∴$y_1^2+y_2^2=({3-\frac{1}{2}x_1^2})+({3-\frac{1}{2}x_2^2})=3$,
∴B=9.
(ii)当直线OP、OQ落在坐标轴上时,显然有B=9,
综上所述,B=9.

点评 本题考查了椭圆与圆,直线的位置关系的应用及分类讨论的思想应用,同时考查了学生的化简运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.2$\sqrt{1-sin8}$-$\sqrt{2+2cos8}$=4cos4-2sin4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\frac{3tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(x+1)-f(0)x-f′(0)x2+2
(1)求f(x)的解析式及减区间;
(2)若f(x)≤x2+ax+b,求$\frac{b-3}{a+2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点A(a,1)在椭圆$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的内部,则a的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的中心在坐标原点,离心率为$\frac{1}{2}$,且它的短轴端点恰好是双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)如图,已知直线x=2与椭圆C相交于两点P,Q,点A,B是椭圆C上位于直线PQ两侧的动点,且总满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?若是,请求出此定值.若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1:$\frac{x^2}{4}+{y^2}$=1.
(1)若椭圆C2:$\frac{x^2}{16}+{\frac{y}{4}^2}$=1,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.不等式x2-3x+2>0的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,输出$s=\frac{2015}{2016}$.那么判断框内应填(  )
A.k≤2015B.k≤2016C.k≥2015D.k≥2016

查看答案和解析>>

同步练习册答案