精英家教网 > 高中数学 > 题目详情
10.由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1:$\frac{x^2}{4}+{y^2}$=1.
(1)若椭圆C2:$\frac{x^2}{16}+{\frac{y}{4}^2}$=1,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围.

分析 (1)分别求出特征三角形是腰长为a 和底边长为2c,从而得到椭圆的相似比.
(2)设出椭圆Cb的方程,直线lMN的方程,根据两点关于直线对称的性质,求出直线lMN的方程,根据直线lMN与椭圆Cb有两个不同的交点,判别式大于零,求得实数b的取值范围.

解答 解:(1)椭圆C2与C1相似.-------------------(2分)
因为椭圆C2的特征三角形是腰长为4,底边长为4$\sqrt{3}$的等腰三角形,而椭圆C1的特征三角形是腰长为2,底边长为2$\sqrt{3}$的等腰三角形,因此两个等腰三角形相似,且相似比为2:1-------------------(4分)
(2)Cb:$\frac{x^2}{{4{b^2}}}+\frac{y^2}{b^2}$=1或$\frac{x^2}{b^2}+\frac{y^2}{{4{b^2}}}$=1
设lMN:y=-x+t,点M(x1,y1),N(x2,y2),MN中点为(x0,y0),
则$\left\{\begin{array}{l}{y=-x+t}\\{\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,所以5x2-8tx+4(t2-b2)=0-------------------(8分)
则x0=$\frac{4t}{5}$,y0=$\frac{t}{5}$------------------(9分)
因为中点在直线y=x+1上,所以有$\frac{t}{5}$=$\frac{4t}{5}$+1,t=-$\frac{5}{3}$-------------------(10分)
即直线lMN的方程为:y=-x-$\frac{5}{3}$,
由题意可知,直线lMN与椭圆Cb有两个不同的交点,
即方程5x2-8×(-$\frac{5}{3}$)x+4[(-$\frac{5}{3}$)2-b2]=0有两个不同的实数解,
所以$△=\frac{1600}{9}$-4×5×4×[(-$\frac{5}{3}$)2-b2]>0,即b>$\frac{{\sqrt{5}}}{3}$.

点评 本题考查直线和圆锥曲线的位置关系,两点关于直线对称的性质,求直线MN的方程是解决的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.定义在R上的函数f(x)=x2+|x-a|+2.(a为常数)
(1)判断函数的奇偶性;
(2)求函数在R上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=ax-lnx,a∈R.
(1)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(2)当a=1,$x∈[\frac{1}{e},e]$时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知M(x0,y0)是椭圆C:$\frac{x^2}{6}+\frac{y^2}{3}=1$上的任一点,从原点O向圆M:${({x-{x_0}})^2}+{({y-{y_0}})^2}=2$作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问B=OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,点(2,$\sqrt{2}$)在C上.
(1)求C的标准方程;
(2)设直线l过点P(0,1),当l绕点P旋转的过程中,与椭圆C有两个交点A,B,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点F(2,0)是椭圆3kx2+y2=1的一个焦点,则实数k的值是$\frac{1}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AB=AC,D,E,F分别为B1A,C1C,BC的中点.
(I)求证:DE∥平面ABC;
(II)求证:平面AEF⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在Rt△ABF中,AB=2BF=4,C,E分别是AB,AF的中点(如图1).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如图2),已知D是AB的中点.

(1)求证:CD∥平面AEF;
(2)求证:平面AEF⊥平面ABF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线的中心在原点,焦点在x轴上,离心率e为$\sqrt{5}$,则该双曲线的两条渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{2}x$C.y=±4xD.y=±x

查看答案和解析>>

同步练习册答案