精英家教网 > 高中数学 > 题目详情
17.等差数列{an}的前n项和为sn,已知(a2-1)3+(a2-1)=sin$\frac{π}{3}$,(a2015-1)3+(a2015-1)=cos$\frac{5π}{6}$,则s2016=(  )
A.2015B.2016C.$2015\sqrt{3}$D.$2016\sqrt{3}$

分析 已知两个等式相加因式分解即可得到a2+a2015的值,利用等差数列的性质及数列的前n项和公式可得.

解答 解:∵(a2-1)3+(a2-1)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$ ①
(a2015-1)3+(a2015-1)=cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$  ②
①+②得(a2-1)3+(a2-1)+(a2015-1)3+(a2015-1)=0,
即(a2-1+a2015-1)[(a2-1)2-(a2-1)((a2015-1)+(a2015-1)2]+(a2-1+a2015-1)=0,
∴a2-1+a2015-1=0,即a2+a2015=2,
∴S2016=$\frac{2016({a}_{1}+{a}_{2016})}{2}$=1008(a2+a2015)=1008×2=2016,
故选:B.

点评 本题考查等差数列的前n项和,根据条件求出a2+a2015=2是解决本题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.七位评委为某跳水运动员打出的分数的茎叶图如图,其极差为14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(2,3),$\overrightarrow{c}$=(-2,k),若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,且acosB=bcosA,a2+b2=c2+ab,则△ABC是(  )
A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{3-2i}{{{i^{\;}}}}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第三四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合M={x|1<x+1≤3},N={x|x2-2x-3>0},则(∁RM)∩(∁RN)等于(  )
A.(-1,3)B.(-1,0)∪(2,3)C.(-1,0]∪[2,3)D.[-1,0]∪(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{2}$x2-4x+3lnx+m有且只有三个不同的零点,则实数m的取值范围为($\frac{7}{2}$,$\frac{15}{2}$-3ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=1+x-sinx,则f(2),f(3),f(π)的大小关系正确的是(  )
A.f(2)>f(3)>f(π)B.f(3)>f(2)>f(π)C.f(2)>f(π)>f(3)D.f(π)>f(3)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=($\frac{1}{2}$)x2-2x-3的定义域和值域.

查看答案和解析>>

同步练习册答案