精英家教网 > 高中数学 > 题目详情

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

【答案】(1);(2)905万;(3)6月

【解析】试题分析:(1)根据平均数和最小二乘法的公式,求解,求出,即可求解回归方程;(2)把分别代入,回归直线方程,即可求解;(3)令,即可求解的值,得出结果.

试题解析:(1

故利润关于月份的线性回归方程.

2)当时,,故可预测月的利润为.

时,, 故可预测月的利润为.

3)由,故公司2016年从月份开始利润超过.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线,直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动圆与已知圆Q1:(x+2)2y2外切,与圆Q2:(x-2)2y2内切,(1) 试求这个动圆圆心的轨迹方程;(2)设直线与(1)中动圆圆心轨迹交于AB两点,坐标原点O到直线的距离为,求△AOB面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数f(x)=Asin(ωx+)(A>0,ω>0,||< )的部分图象如图所示:

(1)求函数f(x)的解析式;
(2)若g(x)的图象是将f(x)的图象先向右平移1个单位,然后纵坐标不变横坐标缩短到原来的一半得到的,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,动点 分别在轴, 轴上运动, 为平面上一点, ,过点平行于轴交的延长线于点.

(Ⅰ)求点的轨迹曲线的方程;

(Ⅱ)过点作轴的垂线,平行于轴的两条直线 分别交曲线 两点(直线不过),交 两点.若线段中点的轨迹方程为,求的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)求的单调区间;

(2)若,当对任意恒成立时, 的最大值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S7=0,a3﹣2a2=12.
(1)求数列{an}的通项公式;
(2)求Sn﹣15n+50的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使得平面平面.

(1)当,是否在折叠后的上存在一点,使得平面?若存在,求出点位置,若不存在,说明理由;

2)设,问当为何值时,三棱锥的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为倡导全体学生为特困学生捐款,举行一元钱,一片心,诚信用水活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:

售出水量x(单位:箱)

7

6

6

5

6

收益y(单位:元)

165

142

148

125

150

(1)求y关于x的线性回归方程;

(2)预测售出8箱水的收益是多少元?

附:回归直线的最小二乘法估计公式分别为: = =

查看答案和解析>>

同步练习册答案