精英家教网 > 高中数学 > 题目详情
11.设A={x|-2≤x≤3},B={x|x≥0},则A∩B={x|0≤x≤3}.

分析 由不等式性质及交集定义能求出结果.

解答 解:∵A={x|-2≤x≤3},B={x|x≥0},
∴A∩B={x|0≤x≤3}.
故答案为:{x|0≤x≤3}.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{2}$cos(x+$\frac{π}{4}}$),x∈R.
(1)求函数f(x)的在[-$\frac{π}{2}$,$\frac{π}{2}$]上的值域;
(2)若θ∈(0,$\frac{π}{2}}$),且f(θ)=$\frac{1}{2}$,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果x∈R,那么函数f(x)=cos2x+sinx的最小值为(  )
A.1B.$\frac{{1-\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}-1}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$.
(1)求ω、a、b的值;  
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随机抽取某厂的某种产品400件,经质检,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.
(Ⅰ)求ξ的分布列;
(Ⅱ)求1件产品的平均利润;
(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.75万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,程序框图输出的结果是(  )
A.12B.132C.1320D.11880

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow a$是已知的平面向量且$\overrightarrow a$≠$\overrightarrow{0}$,关于向量$\overrightarrow a$的分解,有如下四个命题:
①给定向量$\overrightarrow b$,总存在向量$\overrightarrow c$,使$\overrightarrow a$=$\overrightarrow b$+$\overrightarrow c$;
②给定向量$\overrightarrow b$和$\overrightarrow c$,总存在实数λ和μ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
③给定单位向量$\overrightarrow b$和正数μ,总存在单位向量$\overrightarrow c$和实数λ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
④给定正数λ和μ,总存在单位向量$\overrightarrow{b}$和单位向量$\overrightarrow c$,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
上述命题中的向量$\overrightarrow b$,$\overrightarrow c$和$\overrightarrow a$在同一平面内且两两不共线,则真命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.sin30°sin75°-sin60°cos105°=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求值:
(1)log${\;}_{\sqrt{3}}$3$\sqrt{3}$=3;(2)log3$\frac{1}{27}$=-3;
(3)2${\;}^{\frac{1}{2}lo{g}_{\sqrt{2}}5}$=5;(4)22+log25=20.

查看答案和解析>>

同步练习册答案