精英家教网 > 高中数学 > 题目详情
19.不等式|x-4|≤3的整数解的个数是(  )
A.4B.5C.6D.7

分析 求出不等式的解集,从而求出不等式的整数解即可.

解答 解:∵|x-4|≤3,
∴-3≤x-4≤3,
∴1≤x≤7,
故不等式的整数解是7个,
故选:D.

点评 本题考查了解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ex-x-2,k为整数,且当x>0时,(x-k)f′(x)+x+1>0恒成立,则k的最大值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|>2|{\overrightarrow{AB}}|$,则m的取值范围为(2$\sqrt{5}$,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函数f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)的定义域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a为小于0的常数)设x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,则a的范围是(-∞,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2|x+1|+|x-2|.
(1)求不等式f(x)≤6的解集;
(2)若a,b,c均为正实数,且满足a+b+c=f(x)min,求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,则$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数的图象y=cos2x向左平移$\frac{π}{4}$个单位后,得到函数y=g(x) 的图象,则y=g(x)的图象关于点($\frac{kπ}{2}$,0),k∈Z对称(填坐标)

查看答案和解析>>

同步练习册答案