精英家教网 > 高中数学 > 题目详情
8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,则$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

分析 判断log${\;}_{\frac{1}{4}}$3的符号,利用奇函数的性质和对数的运算性质计算.

解答 解:∵log${\;}_{\frac{1}{4}}$3<0,
f(log${\;}_{\frac{1}{4}}$3)=-f(log43)=-f(log2$\sqrt{3}$)=-2${\;}^{lo{g}_{2}\sqrt{3}}$+1=-2$\sqrt{3}$.
故答案为:$-2\sqrt{3}$.

点评 本题考查了奇函数的性质,对数的运算性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的通项${a_n}={2^n}cos({nπ})$,则a1+a2+…+a100=(  )
A.0B.$\frac{{2-{2^{101}}}}{3}$C.2-2101D.$\frac{2}{3}({{2^{100}}-1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式|x-4|≤3的整数解的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-m.
(Ⅰ)求函数f(x)的最小正周期与单调递增区间;
(Ⅱ)若x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,方程f(x)=0有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,已知a3=2,a3+a5+a7=26,则a7=(  )
A.12B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2axlnx-2a+1(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)≥0对任意 在x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知幂函数f(x)=xa的图象过点(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),记数列{an}的前n项和为Sn,则S2018=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2019}+1$D.$\sqrt{2019}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正项等比数列{an}满足a2017=2a2016+3a2015,若存在不同的两项ap,am使得$\sqrt{{a_p}•{a_m}}=3\sqrt{3}•{a_1}$,则$\frac{1}{m}+\frac{4}{p}$的最小值是$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a{x}^{2}+bx}{{e}^{x}}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)若?x0∈[1,e]使得不等式f(x0)-k<0能成立,求实数k的取值范围;
(3)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

同步练习册答案