精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的通项${a_n}={2^n}cos({nπ})$,则a1+a2+…+a100=(  )
A.0B.$\frac{{2-{2^{101}}}}{3}$C.2-2101D.$\frac{2}{3}({{2^{100}}-1})$

分析 推导出${a}_{n}=(-2)^{n}$,由此利用等比数列前n项和公式能求出a1+a2+…+a100

解答 解:∵数列{an}的通项${a_n}={2^n}cos({nπ})$,
∴a1=2cosπ=-2,
${a}_{2}={2}^{2}$cos2π=22
${a}_{3}={2}^{3}cos3π=-{2}^{3}$,
${a}_{4}={2}^{4}cos4π={2}^{4}$,
∴${a}_{n}=(-2)^{n}$,
a1+a2+…+a100=$\frac{-2[1-(-2)^{100}]}{1-(-2)}$=$\frac{2}{3}$(2100-1).
故选:D.

点评 本题考查数列的前100项和的求法,考查余弦函数、等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.对于任意实数a、b、c、d,下列结论中正确的个数是(  )
①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ex-x-2,k为整数,且当x>0时,(x-k)f′(x)+x+1>0恒成立,则k的最大值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=(1og3x)2-21og3x+3的定义域为[1,27],求函数的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数x,如果x是偶数,就将它减半;如果x是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“3x+1”猜想.如图是验证“3x+1”猜想的一个程序框图,若输出n的值为8,则输入正整数m的所有可能值的个数为(  )
A.3B.4C.6D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占$\frac{3}{5}$,采用微信支付的占$\frac{2}{3}$,40岁以上采用微信支付的占$\frac{1}{4}$.
(Ⅰ)请完成下面2×2列联表:
40岁以下40岁以上合计
使用微信支付
未使用微信支付
合计
并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?
(Ⅱ)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
参考数据:
P(K2≥k00.1000.0500.0100.001
k02.7603.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|>2|{\overrightarrow{AB}}|$,则m的取值范围为(2$\sqrt{5}$,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函数f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,则$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案