精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{a{x}^{2}+bx}{{e}^{x}}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)若?x0∈[1,e]使得不等式f(x0)-k<0能成立,求实数k的取值范围;
(3)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

分析 (1)求出原函数的导函数,由f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线,可得b=1,由关于a的方程组,由此可得a值;
(2)问题转化为k>f(x)min在[1,e]成立即可,更换函数的单调性求出f(x)在[1,2]的最小值,求出k的范围即可;
(3)记函数F(x)=f(x)-(x-$\frac{1}{x}$),x>0,求其导函数,可得当x≥2时,F'(x)<0恒成立,当0<x<2时,F'(x)<0在(0,+∞)上恒成立,故F(x)在(0,+∞)上单调递减.由函数的零点存在性定理及其单调性知存在唯一的x0∈(1,2),使F(x0)=0,有g(x)=min{f(x),x-$\frac{1}{x}$},得到h(x)的分段函数的形式,分离参数c后利用导数求得答案.

解答 解:(1)f′(x)=$\frac{-{ax}^{2}+(2a-b)x+b}{{e}^{x}}$,
∵f(x)在x=0处取得极值,∴f'(0)=0,即b=0,
此时f(x)=$\frac{{ax}^{2}}{{e}^{x}}$,f′(x)=$\frac{-{ax}^{2}+2ax}{{e}^{x}}$,
设直线x-ey=0与曲线y=f(x)切于点P(x0,y0),
由题意得$\left\{\begin{array}{l}{{\frac{1}{e}x}_{0}=\frac{{{ax}_{0}}^{2}}{{e}^{{x}_{0}}}}\\{\frac{1}{e}=\frac{-{{ax}_{0}}^{2}+2{ax}_{0}}{{e}^{{x}_{0}}}}\end{array}\right.$,解之得a=1;
(2)由(1)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,
若?x0∈[1,e]使得不等式f(x0)-k<0能成立,
即k>f(x)min在[1,e]成立即可,
而f′(x)=$\frac{x(2-x)}{{e}^{x}}$,
∵x∈[1,2],则f′(x)≤0在[1,2]恒成立,
f(x)在[1,2]递减,f(x)min=f(2)=$\frac{4}{{e}^{2}}$,
故k>$\frac{4}{{e}^{2}}$.
(3)函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),
由f(x)的导数为f′(x)=$\frac{x(2-x)}{{e}^{x}}$,
当0<x<2时,f(x)递增,x>2时,f(x)递减.
对x-$\frac{1}{x}$在x>0递增,设y=f(x)和y=x-$\frac{1}{x}$的交点为(x0,y0),
由f(1)-(1-1)=$\frac{1}{e}$>0,f(2)-(2-$\frac{1}{2}$)=$\frac{4}{{e}^{2}}$-$\frac{3}{2}$<0,即有1<x0<2,
当0<x<x0时,g(x)=x-$\frac{1}{x}$,
h(x)=g(x)-cx2=x-$\frac{1}{x}$-cx2,h′(x)=1+$\frac{1}{{x}^{2}}$-2cx,
由题意可得h′(x)≥0在0<x<x0时恒成立,
即有2c≤$\frac{1}{x}$+$\frac{1}{{x}^{3}}$,由y=$\frac{1}{x}$+$\frac{1}{{x}^{3}}$在(0,x0)递减,
可得2c≤$\frac{1}{{x}_{0}}$+$\frac{1}{{{x}_{0}}^{3}}$①
当x≥x0时,g(x)=$\frac{{x}^{2}}{{e}^{x}}$,
h(x)=g(x)-cx2=$\frac{{x}^{2}}{{e}^{x}}$-cx2,h′(x)=$\frac{2x{-x}^{2}}{{e}^{x}}$-2cx,
由题意可得h′(x)≥0在x≥x0时恒成立,
即有2c≤$\frac{2-x}{{e}^{x}}$,由y=$\frac{2-x}{{e}^{x}}$,可得y′=$\frac{x-3}{{e}^{x}}$,
可得函数y在(3,+∞)递增;在(x0,3)递减,
即有x=3处取得极小值,且为最小值-$\frac{1}{{e}^{3}}$,
可得2c≤-$\frac{1}{{e}^{3}}$②,
由①②可得2c≤-$\frac{1}{{e}^{3}}$,解得c≤-$\frac{1}{{2e}^{3}}$.

点评 本题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,则$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数的图象y=cos2x向左平移$\frac{π}{4}$个单位后,得到函数y=g(x) 的图象,则y=g(x)的图象关于点($\frac{kπ}{2}$,0),k∈Z对称(填坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用数学归纳法证明不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n∈N*,n>4),第一步要证明的不等式中左边有31项之和(填数字).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x-1}$(a为常数)在($\frac{1}{4}$,$\frac{1}{2}$)内有唯一的极值点.
(1)求a的取值范围.
(2)若x1∈(0,$\frac{1}{2}$),x2∈(2,+∞),试判断f(x2)-f(x1)与$\frac{8}{9}$ln2+$\frac{2}{3}$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1时,求函数f(x)的最大值;
(2)若a<0,且对任意的x1,x2∈[0,2],f(x1)+1>g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某产品的销售收入y1(万元)是产量x(千台)的函数:${y_1}=17{x^2}$(x>0),生产成本y2万元是产量x(千台)的函数:${y_2}=2{x^3}-{x^2}$(x>0),为使利润最大,应生产(  )
A.9千台B.8千台C.7千台D.6千台

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.O为△ABC的外心,D为AC的中点,AC=6,DO交AB边所在直线于N点,则$\overrightarrow{AC}•\overrightarrow{CN}$的值为-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为(  )
A.2B.2 或-1C.-2或1D.-2

查看答案和解析>>

同步练习册答案