精英家教网 > 高中数学 > 题目详情
7.O为△ABC的外心,D为AC的中点,AC=6,DO交AB边所在直线于N点,则$\overrightarrow{AC}•\overrightarrow{CN}$的值为-18.

分析 利用垂径定理可得$\overrightarrow{CN}$在$\overrightarrow{AC}$上的投影为-3,利用定义求出$\overrightarrow{AC}•\overrightarrow{CN}$的值.

解答 解:∵D是AC的中点,∴OD⊥AC,即DN⊥AC,
∴CN•cos∠ACN=CD=$\frac{1}{2}$AC=3,
∴$\overrightarrow{AC}•\overrightarrow{CN}$=AC•CN•cos(180°-∠ACN)=-6CNcos∠ACN=-6×3=-18.
故答案为:-18.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知正项等比数列{an}满足a2017=2a2016+3a2015,若存在不同的两项ap,am使得$\sqrt{{a_p}•{a_m}}=3\sqrt{3}•{a_1}$,则$\frac{1}{m}+\frac{4}{p}$的最小值是$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a{x}^{2}+bx}{{e}^{x}}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)若?x0∈[1,e]使得不等式f(x0)-k<0能成立,求实数k的取值范围;
(3)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.年级组长徐老师为教育同学们合理使用手机,在本年级内随机抽取了30名同学做问卷调查.经统计,在这30名同学中长时间使用手机的同学恰占总人数的$\frac{2}{3}$,长时间使用手机且年级名次200名以内的同学有4人,短时间用手机而年级名次在200名以外的同学有2人.
(Ⅰ)请根据已知条件完成2×2列联表;
长时间用手机短时间用手机总计
名次200以内
名次200以外
总计
(Ⅱ)判断我们是否有99%的把握认为“学习成绩与使用手机时间有关”
【附表及公式】${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设等差数列{an}的前n项和为Sn,且满足a1008+a1009>0,a1009<0,则数列$\left\{{\frac{1}{a_n}}\right\}$中值最小的项是(  )
A.第1008 项B.第1009 项C.第2016项D.第2017项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量$\overrightarrow m$=(sinB,cosB)与向量$\overrightarrow n=(0,\;-1)$的夹角为$\frac{π}{3}$,
求:(1)角B的大小;
(2)$\frac{a+c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的外接圆的圆心为O,半径为1,$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:则方程f[g(x)]=0有且仅有6个根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,若他们3人向目标各发1枪,则目标没有被击中的概率为0.009.

查看答案和解析>>

同步练习册答案