精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:则方程f[g(x)]=0有且仅有6个根.

分析 把复合函数的定义域和值域进行对接,看满足外层函数为零时内层函数有几个自变量与之相对应.通过f(x)=0可知函数有三个解,g(x)=0有2个解,推出正确结论.

解答 解:由于满足方程f[g(x)]=0 的g(x)有三个不同值,
由于每个值g(x)对应了2个x值,
故满足f[g(x)]=0的x值有6个,
即方程f[g(x)]=0有且仅有6个根.
故答案为:6.

点评 本题考查根的存在性及根的个数判断,函数的图象,考查逻辑思维能力及识别图象的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.用数学归纳法证明不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n∈N*,n>4),第一步要证明的不等式中左边有31项之和(填数字).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.O为△ABC的外心,D为AC的中点,AC=6,DO交AB边所在直线于N点,则$\overrightarrow{AC}•\overrightarrow{CN}$的值为-18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1).
(Ⅰ)当($\overrightarrow{a}$+$2\overrightarrow{b}$)⊥($2\overrightarrow{a}$-$\overrightarrow{b}$)时,求x的值;
(Ⅱ)若<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题正确的是(  )
A.若两个平面平行于同一条直线,则这两个平面平行
B.若有两条直线与两个平面都平行,则这两个平面平行
C.若有一条直线与两个平面都垂直,则这两个平面平行
D.若有一条直线与这两个平面所成的角相等,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求f(x)的解析式;
(2)求f(x)对称中心坐标和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为(  )
A.2B.2 或-1C.-2或1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式$\frac{2x-1}{x+1}$<0的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正项数列{an}满足2an+1=an+an+2,且S2n-1=an2,其中Sn为数列{an}的前n项和,若实数λ使得不等式$\frac{(n+8){a}_{n}+70}{λ}$≥n恒成立,则实数λ的最大值为$\frac{112}{3}$.

查看答案和解析>>

同步练习册答案