精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1).
(Ⅰ)当($\overrightarrow{a}$+$2\overrightarrow{b}$)⊥($2\overrightarrow{a}$-$\overrightarrow{b}$)时,求x的值;
(Ⅱ)若<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,求x的取值范围.

分析 (I)$\overrightarrow{a}$+$2\overrightarrow{b}$=(1+2x,4),$2\overrightarrow{a}$-$\overrightarrow{b}$=(2-x,3),由($\overrightarrow{a}$+$2\overrightarrow{b}$)⊥($2\overrightarrow{a}$-$\overrightarrow{b}$),可得($\overrightarrow{a}$+$2\overrightarrow{b}$)•($2\overrightarrow{a}$-$\overrightarrow{b}$)=0,解出即可得出.
(II)<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$>0,且不能为同方向共线.

解答 解:(I)$\overrightarrow{a}$+$2\overrightarrow{b}$=(1+2x,4),$2\overrightarrow{a}$-$\overrightarrow{b}$=(2-x,3),
∵($\overrightarrow{a}$+$2\overrightarrow{b}$)⊥($2\overrightarrow{a}$-$\overrightarrow{b}$),∴(1+2x)(2-x)+12=0,解得x=-2或$\frac{7}{2}$.
(II)<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$>0,且不能为同方向共线.
∴x+2>0,解得x>-2.
由2x-1=0,解得x=$\frac{1}{2}$,舍去.
∴x的取值范围是$(-2,\frac{1}{2})$∪$(\frac{1}{2},+∞)$.

点评 本题考查了向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,a1=1,则a2017=$\frac{2}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.年级组长徐老师为教育同学们合理使用手机,在本年级内随机抽取了30名同学做问卷调查.经统计,在这30名同学中长时间使用手机的同学恰占总人数的$\frac{2}{3}$,长时间使用手机且年级名次200名以内的同学有4人,短时间用手机而年级名次在200名以外的同学有2人.
(Ⅰ)请根据已知条件完成2×2列联表;
长时间用手机短时间用手机总计
名次200以内
名次200以外
总计
(Ⅱ)判断我们是否有99%的把握认为“学习成绩与使用手机时间有关”
【附表及公式】${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量$\overrightarrow m$=(sinB,cosB)与向量$\overrightarrow n=(0,\;-1)$的夹角为$\frac{π}{3}$,
求:(1)角B的大小;
(2)$\frac{a+c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的外接圆的圆心为O,半径为1,$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在${(\sqrt{x}+\frac{1}{{2•\root{4}{x}}})^n}$的展开式中,前三项的系数成等差数列.
(Ⅰ)求展开式中含有x的项的系数;     
(Ⅱ)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:则方程f[g(x)]=0有且仅有6个根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,-1).
(1)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在矩形ABCD中,AB=$\sqrt{2}$,BC=3,点E满足$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$,点F在边CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=1,则$\overrightarrow{AE}$•$\overrightarrow{BF}$=(  )
A.1B.2C.$\sqrt{3}$D.3

查看答案和解析>>

同步练习册答案