精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,-1).
(1)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值.

分析 (1)利用两个向量的数量积的定义,两个向量的数量积公式,求得$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ的余弦值,可得求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ.
(2)根据两个向量垂直的性质,求得实数λ的值.

解答 解:(1)由题意可得$\overrightarrow{a}$+$\overrightarrow{b}$=(-1,2),得$\overrightarrow{a}$-$\overrightarrow{b}$=(3,4),
∴cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{b})•(\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}|•|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{-3+8}{\sqrt{5}•5}$=$\frac{{\sqrt{5}}}{5}$.
(2)由题意根据若$\overrightarrow{a}$•($\overrightarrow{a}$+λ$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$+λ•$\overrightarrow{a}•\overrightarrow{b}$=10+λ•(-2-3)=0,∴λ=2.

点评 本题主要考查两个向量的数量积的定义,两个向量的数量积公式的应用,两个向量垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1时,求函数f(x)的最大值;
(2)若a<0,且对任意的x1,x2∈[0,2],f(x1)+1>g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1).
(Ⅰ)当($\overrightarrow{a}$+$2\overrightarrow{b}$)⊥($2\overrightarrow{a}$-$\overrightarrow{b}$)时,求x的值;
(Ⅱ)若<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求f(x)的解析式;
(2)求f(x)对称中心坐标和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为(  )
A.2B.2 或-1C.-2或1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线顶点在原点,焦点在y轴上且过点P(4,1),则抛物线的标准方程为x2=16y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式$\frac{2x-1}{x+1}$<0的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$y=sin({2x-\frac{π}{3}})$在$[{-\frac{π}{2},\frac{π}{2}}]$上的单调递增区间为[-$\frac{π}{12}$,$\frac{5π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设{an}是首项为3的正项数列,且(n+1)an+12-nan2+an+1•an=0(n=1,2,3,…),则它的通项公式an=$\frac{3}{n}$.

查看答案和解析>>

同步练习册答案