精英家教网 > 高中数学 > 题目详情
2.函数$y=sin({2x-\frac{π}{3}})$在$[{-\frac{π}{2},\frac{π}{2}}]$上的单调递增区间为[-$\frac{π}{12}$,$\frac{5π}{12}$].

分析 根据正弦函数的图象与性质,求出函数y在$[{-\frac{π}{2},\frac{π}{2}}]$上的单调递增区间.

解答 解:函数$y=sin({2x-\frac{π}{3}})$,
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{6}$+2kπ≤2x≤$\frac{5π}{6}$+2kπ,k∈Z,
∴-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z,
令k=0,得函数y在$[{-\frac{π}{2},\frac{π}{2}}]$上的单调递增区间是[-$\frac{π}{12}$,$\frac{5π}{12}$].
故答案为:[-$\frac{π}{12}$,$\frac{5π}{12}$].

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量$\overrightarrow m$=(sinB,cosB)与向量$\overrightarrow n=(0,\;-1)$的夹角为$\frac{π}{3}$,
求:(1)角B的大小;
(2)$\frac{a+c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,-1).
(1)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上的奇函数,且f(x)=2x+$\frac{m}{2^x}$,设g(x)=$\left\{{\begin{array}{l}{f(x),}&{x>1}\\{f(-x),}&{x≤1}\end{array}}$,若函数y=g(x)-t有两个不同的零点,则实数t的取值范围是$(\frac{3}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,若他们3人向目标各发1枪,则目标没有被击中的概率为0.009.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,若$f({\frac{α}{2}})=\frac{1}{2},α∈({\frac{π}{3},\frac{5π}{6}})$,求g(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在矩形ABCD中,AB=$\sqrt{2}$,BC=3,点E满足$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$,点F在边CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=1,则$\overrightarrow{AE}$•$\overrightarrow{BF}$=(  )
A.1B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinx+cosy=$\frac{3}{5}$,则μ=sinx-cos2y的最大值为$\frac{21}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一汽车按s=3t2+1做运动,那么它在t=3s时的瞬时速度为18 m/s.

查看答案和解析>>

同步练习册答案