分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,根据条件求得sin(α+$\frac{π}{6}$)和cos(α+$\frac{π}{6}$) 的值,再利用两角和差的三角公式、二倍角公式求得g(α)的值.
解答 解:(1)根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,
可得A=2,$\frac{2π}{ω}$=$\frac{11π}{12}$-(-$\frac{π}{12}$),∴ω=2,再根据五点法作图可得2•(-$\frac{π}{12}$)+φ=0,求得φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
(2)将函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)=2sin(2x-$\frac{π}{2}$+$\frac{π}{6}$)=2sin(2x-$\frac{π}{3}$)的图象,
若 f($\frac{α}{2}$)=2sin(α+$\frac{π}{6}$)=$\frac{1}{2}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),∴sin(α+$\frac{π}{6}$)=$\frac{1}{4}$.
再根据α+$\frac{π}{6}$∈($\frac{π}{2}$,π),∴cos(α+$\frac{π}{6}$)=-$\sqrt{{1-sin}^{2}(α+\frac{π}{6})}$=-$\frac{\sqrt{15}}{4}$.
则g(α)=2sin(2α-$\frac{π}{3}$)=2sin[2(α+$\frac{π}{6}$)-$\frac{2π}{3}$]=2sin(2α+$\frac{π}{3}$)cos$\frac{2π}{3}$-2cos(2α+$\frac{π}{3}$)sin$\frac{2π}{3}$
=-sin(2α+$\frac{π}{3}$)-$\sqrt{3}$•sin(2α+$\frac{π}{3}$)=-2sin(α+$\frac{π}{6}$)cos(α+$\frac{π}{6}$)-$\sqrt{3}$•(2${cos}^{2}(α+\frac{π}{6})$-1)
=-2•$\frac{1}{4}•(-\frac{\sqrt{15}}{4})$-$\sqrt{3}$•(2•$\frac{15}{16}$-1)=$\frac{\sqrt{15}-7\sqrt{3}}{8}$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值;函数y=Asin(ωx+φ)的图象变换规律,两角和差的三角公式、二倍角的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{8}{15}$ | B. | -$\frac{29}{15}$ | C. | -$\frac{27}{20}$ | D. | $\frac{1}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com