精英家教网 > 高中数学 > 题目详情
15.如果复数(m2+i)(1+mi)(其中i是虚数单位)是纯虚数,则实数m=0或1.

分析 利用复数代数形式的乘除运算化简复数(m2+i)(1+mi),结合已知条件即可求出答案.

解答 解:∵(m2+i)(1+mi)=m2-m+(1+m3)i是纯虚数,
∴$\left\{\begin{array}{l}{{m}^{2}-m=0}\\{1+{m}^{3}≠0}\end{array}\right.$,解得m=0或1.
故答案为:0或1.

点评 本题考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.《写给全人类的数学魔法书》第3部遇到任何数学题都能够解答的10种解题思路中有这样一道例题:“远望巍巍塔八层,红光点点倍加增,其灯五百一十,则顶层有2盏灯”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.向量$\overrightarrow{a}$=(5,2),$\overrightarrow{b}$=(-4,-3),$\overrightarrow{c}$=(x,y),若3$\overrightarrow{a}$-2$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,则$\overrightarrow{c}$=(  )
A.(23,12)B.(7,0)C.(-7,0)D.(-23,-12)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若不等式$\frac{1}{2}{x^2}-{y^2}$≤2cx(y-x)对任意满足x>y>0的实数x,y恒成立,则实数c的最大值为$\frac{\sqrt{2}}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上的奇函数,且f(x)=2x+$\frac{m}{2^x}$,设g(x)=$\left\{{\begin{array}{l}{f(x),}&{x>1}\\{f(-x),}&{x≤1}\end{array}}$,若函数y=g(x)-t有两个不同的零点,则实数t的取值范围是$(\frac{3}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(-1,-2),B(3,8),若$\overrightarrow{AB}=2\overrightarrow{AC}$,则点C的坐标为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,若$f({\frac{α}{2}})=\frac{1}{2},α∈({\frac{π}{3},\frac{5π}{6}})$,求g(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式为an=$\frac{1}{3n-2}$,n∈N*
(1)求数列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n项和Sn
(2)设bn=anan+1,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z1=1+i,z2=3-2i,z3=z2-z1,z4=z1•z2
(Ⅰ)z3,z4
(Ⅱ)在复平面上,复数z3,z4所对应的点分别为A,B,求|AB|.

查看答案和解析>>

同步练习册答案