精英家教网 > 高中数学 > 题目详情
5.《写给全人类的数学魔法书》第3部遇到任何数学题都能够解答的10种解题思路中有这样一道例题:“远望巍巍塔八层,红光点点倍加增,其灯五百一十,则顶层有2盏灯”.

分析 设顶层灯数为a1,由题意得:q=2,利用等比数列前n项和公式列出方程,能求出结果.

解答 解:设顶层灯数为a1,由题意得:q=2,
则${S}_{8}=\frac{{a}_{1}(1-{2}^{8})}{1-2}$=510,
解得a1=2. 
故答案为:2.

点评 本题考查等比数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.锐角△ABC中,b=1,c=2,则a取值范围为(  )
A.(1,3)B.$({1,\sqrt{3}})$C.$({\sqrt{3},2})$D.$({\sqrt{3},\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a、b为正实数,且a+b=2$\sqrt{2}$ab.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知i是虚数单位,则$|{\frac{3+2i}{2-i}}|$=$\frac{{\sqrt{65}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有关向量的如下命题中,正确命题的个数为(  )
①若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c\;(\overrightarrow{b}≠\overrightarrow 0)$,则$\overrightarrow a$=$\overrightarrow c$②$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$=($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$
③在△ABC中,$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PC}•\overrightarrow{PA}$,则点P必为△ABC的垂心.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对应的边分别为a,b,c,且满足acosC=2bcosA-ccosA.
(1)求角A的大小;
(2)若a=2$\sqrt{3}$,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α终边上一点P(-3,4),则sin α+tan α的值为(  )
A.-$\frac{8}{15}$B.-$\frac{29}{15}$C.-$\frac{27}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点,求动弦AB的中点P的轨迹方程为${x^2}+{({y-\frac{7}{4}})^2}=\frac{1}{16}$($\frac{3}{2}$≤y<2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果复数(m2+i)(1+mi)(其中i是虚数单位)是纯虚数,则实数m=0或1.

查看答案和解析>>

同步练习册答案