精英家教网 > 高中数学 > 题目详情
20.有关向量的如下命题中,正确命题的个数为(  )
①若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c\;(\overrightarrow{b}≠\overrightarrow 0)$,则$\overrightarrow a$=$\overrightarrow c$②$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$=($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$
③在△ABC中,$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PC}•\overrightarrow{PA}$,则点P必为△ABC的垂心.
A.0B.1C.2D.3

分析 根据平面向量的数量积定义判断①②,移项化简判断③.

解答 解:对于①,在等边三角形中,$\overrightarrow{AB}•\overrightarrow{BC}=\overrightarrow{BC}•\overrightarrow{CA}$,显然$\overrightarrow{AB}≠\overrightarrow{CA}$,故①错误;
对于②,$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$表示与$\overrightarrow{a}$共线的向量,($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$表示与$\overrightarrow{c}$共线的向量,显然$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$≠($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$,故②错误;
对于③,若$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PC}•\overrightarrow{PA}$,则$\overrightarrow{PB}•$($\overrightarrow{PA}-\overrightarrow{PC}$)=0,即$\overrightarrow{PB}•\overrightarrow{CA}=0$,
∴PB⊥CA,同理可得PA⊥BC,PC⊥AB,
∴P是△ABC的垂心,故③正确.
故选B.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.点P是焦点为F1,F2的双曲线$\frac{x^2}{25}-\frac{y^2}{16}=1$上的动点,若点I满足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,则点I的横坐标为±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3-2x.
(1)若关于x的方程f(x)=a有三个不同的实数解,求a的取值范围.
(2)求过曲线f(x)上的点A(1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=x2-2lnx的单调递减区间为(  )
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.年级组长徐老师为教育同学们合理使用手机,在本年级内随机抽取了30名同学做问卷调查.经统计,在这30名同学中长时间使用手机的同学恰占总人数的$\frac{2}{3}$,长时间使用手机且年级名次200名以内的同学有4人,短时间用手机而年级名次在200名以外的同学有2人.
(Ⅰ)请根据已知条件完成2×2列联表;
长时间用手机短时间用手机总计
名次200以内
名次200以外
总计
(Ⅱ)判断我们是否有99%的把握认为“学习成绩与使用手机时间有关”
【附表及公式】${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.《写给全人类的数学魔法书》第3部遇到任何数学题都能够解答的10种解题思路中有这样一道例题:“远望巍巍塔八层,红光点点倍加增,其灯五百一十,则顶层有2盏灯”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量$\overrightarrow m$=(sinB,cosB)与向量$\overrightarrow n=(0,\;-1)$的夹角为$\frac{π}{3}$,
求:(1)角B的大小;
(2)$\frac{a+c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在${(\sqrt{x}+\frac{1}{{2•\root{4}{x}}})^n}$的展开式中,前三项的系数成等差数列.
(Ⅰ)求展开式中含有x的项的系数;     
(Ⅱ)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上的奇函数,且f(x)=2x+$\frac{m}{2^x}$,设g(x)=$\left\{{\begin{array}{l}{f(x),}&{x>1}\\{f(-x),}&{x≤1}\end{array}}$,若函数y=g(x)-t有两个不同的零点,则实数t的取值范围是$(\frac{3}{2},+∞)$.

查看答案和解析>>

同步练习册答案