精英家教网 > 高中数学 > 题目详情
8.函数y=x2-2lnx的单调递减区间为(  )
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

分析 求出原函数的导函数,再由导函数小于0求得函数的单调减区间.

解答 解:由y=x2-2lnx,得$y′=2x-\frac{2}{x}=\frac{2(x+1)(x-1)}{x}$(x>0).
由y′<0,得$\frac{2(x+1)(x-1)}{x}$<0,解得x<-1或0<x<1.
∵x>0,
∴函数y=x2-2lnx的单调递减区间为(0,1].
故选:B.

点评 本题考查利用导数研究函数的单调性,考查函数的单调性与导函数符号间的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.数列{an}中,a1=2,a2=3,an+1=an-an-1(n≥2),那么a2019=(  )
A.1B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,a2+c2-b2=$\sqrt{3}$ac,则cosA+sinC的取值范围为$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a、b为正实数,且a+b=2$\sqrt{2}$ab.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1时,求函数f(x)的最大值;
(2)若a<0,且对任意的x1,x2∈[0,2],f(x1)+1>g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知i是虚数单位,则$|{\frac{3+2i}{2-i}}|$=$\frac{{\sqrt{65}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有关向量的如下命题中,正确命题的个数为(  )
①若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c\;(\overrightarrow{b}≠\overrightarrow 0)$,则$\overrightarrow a$=$\overrightarrow c$②$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$=($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$
③在△ABC中,$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PC}•\overrightarrow{PA}$,则点P必为△ABC的垂心.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α终边上一点P(-3,4),则sin α+tan α的值为(  )
A.-$\frac{8}{15}$B.-$\frac{29}{15}$C.-$\frac{27}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线顶点在原点,焦点在y轴上且过点P(4,1),则抛物线的标准方程为x2=16y.

查看答案和解析>>

同步练习册答案