精英家教网 > 高中数学 > 题目详情
16.设a、b为正实数,且a+b=2$\sqrt{2}$ab.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.

分析 (1)a、b为正实数,且a+b=2$\sqrt{2}$ab.可得a+b=2$\sqrt{2}$ab≥2$\sqrt{ab}$,解得ab≥$\frac{1}{2}$,可得2(a2+b2)≥(a+b)2=8a2b2,即可得出.
(2)由a、b为正实数,且a+b=2$\sqrt{2}$ab.可得(a-b)2=(a+b)2-4ab=8a2b2-4ab≥4(ab)3,化简即可得出.

解答 解:(1)∵a、b为正实数,且a+b=2$\sqrt{2}$ab.
∴a+b=2$\sqrt{2}$ab≥2$\sqrt{ab}$,解得ab≥$\frac{1}{2}$,当且仅当a=b=$\frac{\sqrt{2}}{2}$时取等号.
∴2(a2+b2)≥(a+b)2=8a2b2≥$8×(\frac{1}{2})^{2}$=2,化为a2+b2≥1,当且仅当a=b=$\frac{\sqrt{2}}{2}$时取等号.
∴a2+b2的最小值是1.
(2)∵a、b为正实数,且a+b=2$\sqrt{2}$ab.
∴(a-b)2=(a+b)2-4ab=8a2b2-4ab≥4(ab)3
化为:(ab-1)2≤0,∴ab=1.

点评 本题考查了基本不等式的性质、不等式的解法、变形能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的图象过点$({0,\frac{1}{2}})$,若$f(x)≤f({\frac{π}{12}})$对x∈R恒成立,则ω的最小值为(  )
A.2B.10C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.
求证:PC∥平面BED.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,用4种不同的颜色对图中的5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻区域不能涂相同颜色,则不同的涂色方案有(  )种.
A.60B.72C.84D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3-2x.
(1)若关于x的方程f(x)=a有三个不同的实数解,求a的取值范围.
(2)求过曲线f(x)上的点A(1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.《数学万花筒》第7页中谈到了著名的“四色定理”.问题起源于1852年的伦敦大学学院毕业生弗朗西斯•加斯里.他给自己的弟弟弗莱德里克写了一封信,信中提到了他认为应该很简单的一道小谜题.他一直尝试着给一张英国各郡的地图着色,在这个过程中,他发现使用四中颜色就可以实现他的目的,即使相邻的两个郡具有不同的颜色.“可以使用四种(或更少)颜色为平面上画出的每张地图着色,使任何相邻的两个地区的边界线具有不同的颜色吗?”他写道.
回答他这个问题用了124年.而且,即使现在,答案也依赖于大量的计算机辅助.目前还不知道四色原理的简单的概念性证明.但较简单的图形还是能够一步步检查得出.如:
若用红、黄、蓝、绿四种颜色给右边的地图着色,共有24种着色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=x2-2lnx的单调递减区间为(  )
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.《写给全人类的数学魔法书》第3部遇到任何数学题都能够解答的10种解题思路中有这样一道例题:“远望巍巍塔八层,红光点点倍加增,其灯五百一十,则顶层有2盏灯”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.向量$\overrightarrow{a}$=(5,2),$\overrightarrow{b}$=(-4,-3),$\overrightarrow{c}$=(x,y),若3$\overrightarrow{a}$-2$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,则$\overrightarrow{c}$=(  )
A.(23,12)B.(7,0)C.(-7,0)D.(-23,-12)

查看答案和解析>>

同步练习册答案