精英家教网 > 高中数学 > 题目详情
18.数列{an}中,a1=2,a2=3,an+1=an-an-1(n≥2),那么a2019=(  )
A.1B.-2C.3D.-3

分析 根据递推关系式先求出a3、a4、a5、a6的值,即可得到an+6=an即可.

解答 解:∵a1=2,a2=3,an+1•=an-an-1
∴a3=a2-a1=3-2=1,a4=a3-a2=1-3=-2,a5=a4-a3=-2-1=-3,a6=a5-a4=-3-(-2)=-1
a7=a6-a5=1-(-3)=2,a8=a7-a6=2-(-1)=3,…故an+6=an,∴a2019=1
故选:A.

点评 本题主要考查数列项的求解,根据递推公式依次进行递推是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员x名.
(Ⅰ)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是12,求x的值;
(Ⅱ)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择.求该客户最终聘请的家政服务员中既有A类又有B类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.先后2次抛掷一枚骰子,将得到的点数分别记为a,b
(Ⅰ)求满足a2+b2=25的概率;
(Ⅱ)设三条线段的长分别为a,b和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的图象过点$({0,\frac{1}{2}})$,若$f(x)≤f({\frac{π}{12}})$对x∈R恒成立,则ω的最小值为(  )
A.2B.10C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2axlnx-2a+1(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)≥0对任意 在x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知以点$C(t,\frac{2}{t})$(t∈R,t≠0)为圆心的圆与x轴交点为O、A,与y轴交于点O、B,其中O为坐标原点.
(1)试写出圆C的标准方程,并证明△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P是焦点为F1,F2的双曲线$\frac{x^2}{25}-\frac{y^2}{16}=1$上的动点,若点I满足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,则点I的横坐标为±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.
求证:PC∥平面BED.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=x2-2lnx的单调递减区间为(  )
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案