精英家教网 > 高中数学 > 题目详情
10.点P是焦点为F1,F2的双曲线$\frac{x^2}{25}-\frac{y^2}{16}=1$上的动点,若点I满足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,则点I的横坐标为±5.

分析 由题意可知I为焦点三角形PF1F2的内心,根据双曲线的定义,及三角形内切圆的性质,即可求得丨丨AF1丨-丨AF2丨丨=2a=10,A是双曲线与x轴的交点,即A1,A2,由IA⊥F1F2,则点I的横坐标为±5.

解答 解:由点I满足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,则I为焦点三角形PF1F2的内心,
设双曲线双曲线$\frac{x^2}{25}-\frac{y^2}{16}=1$的焦点三角形的内切圆且三边F1F2,PF1,PF2于点A,B,C,双曲线的两个顶点为A1,A2
则 丨PC丨=丨PB丨,丨F1C丨=丨F1A丨,丨F2B丨=丨F2A丨,
丨丨PF1丨-丨PF2丨丨=丨丨CF1丨-丨BF2丨丨=丨丨AF1丨-丨AF2丨丨,
由丨丨PF1丨-丨PF2丨丨=2a=10,丨丨AF1丨-丨AF2丨丨=2a=10,
∴A在双曲线上,由A在F1F2上,
∴A是双曲线与x轴的交点,即A1,A2
由IAi⊥F1F2,i=1,2,则
∴点I的横坐标为±5,
故答案为:±5.

点评 本题考查双曲线的定义,双曲线焦点三角形内切圆的性质,双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点结论的应用,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=lg(2x2-x-1)的定义域为(  )
A.(-$\frac{1}{2}$,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数$z=\frac{-1-2i}{i}$,则复数z-1的摸为(  )
A.$\sqrt{10}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}中,a1=2,a2=3,an+1=an-an-1(n≥2),那么a2019=(  )
A.1B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两个等差数列2,4,6…及2,5,8,…由这两个数列的共同项按从小到大的顺序组成一个新数列{an},数列{bn}的前n项和为Sn=3n
(1)求a2,a3,并写{an}的通项公式(可不用叙述过程);
(2)求出{bn}的通项公式,并求数列{anbn}的前n项和Tn
(3)记集合M=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}≥λ,n∈{N^+}}\right.\}$,若M的子集个数为3,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.锐角△ABC中,b=1,c=2,则a取值范围为(  )
A.(1,3)B.$({1,\sqrt{3}})$C.$({\sqrt{3},2})$D.$({\sqrt{3},\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.5个同学排成一横排照相.
(1)某甲不站在排头也不能在排尾的不同排法有多少种?
(2)甲、乙必须相邻的排法有多少种?
(3)甲、乙不能相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,a2+c2-b2=$\sqrt{3}$ac,则cosA+sinC的取值范围为$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有关向量的如下命题中,正确命题的个数为(  )
①若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c\;(\overrightarrow{b}≠\overrightarrow 0)$,则$\overrightarrow a$=$\overrightarrow c$②$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c)$=($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow{c}$
③在△ABC中,$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PC}•\overrightarrow{PA}$,则点P必为△ABC的垂心.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案