5£®ÒÑÖªÁ½¸öµÈ²îÊýÁÐ2£¬4£¬6¡­¼°2£¬5£¬8£¬¡­ÓÉÕâÁ½¸öÊýÁеĹ²Í¬Ïî°´´ÓСµ½´óµÄ˳Ðò×é³ÉÒ»¸öÐÂÊýÁÐ{an}£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn=3n£®
£¨1£©Çóa2£¬a3£¬²¢Ð´{an}µÄͨÏʽ£¨¿É²»ÓÃÐðÊö¹ý³Ì£©£»
£¨2£©Çó³ö{bn}µÄͨÏʽ£¬²¢ÇóÊýÁÐ{anbn}µÄǰnÏîºÍTn£®
£¨3£©¼Ç¼¯ºÏM=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}¡Ý¦Ë£¬n¡Ê{N^+}}\right.\}$£¬ÈôMµÄ×Ó¼¯¸öÊýΪ3£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâa2=8£¬a3=14£¬an=6n-4£®
£¨2£©ÓÉÊýÁÐ{bn}µÄǰnÏîºÍΪSn=3n£¬Çó³ö${b_n}=\left\{\begin{array}{l}3£¬£¨n=1£©\\ 2•{3^{n-1}}£¨n¡Ý2£©\end{array}\right.$£®ÓÉ´ËÀûÓôíλÏà¼õ·¨ÄÜÇó³ö½á¹û£®
£¨3£©ÓÉM=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}¡Ý¦Ë£¬n¡Ê{N^+}}\right.\}$£¬µÃ$\frac{{{T_n}+8{S_n}-9}}{S_n^2}=\frac{6n+1}{3^n}$£¬Áî$f£¨n£©=\frac{6n+1}{3^n}$£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÁ½¸öµÈ²îÊýÁÐ2£¬4£¬6¡­¼°2£¬5£¬8£¬¡­ÓÉÕâÁ½¸öÊýÁеĹ²Í¬Ïî°´´ÓСµ½´óµÄ˳Ðò×é³ÉÒ»¸öÐÂÊýÁÐ{an}£¬
¡àÓÉÌâÒâa2=8£¬a3=14£¬an=6n-4£®
£¨2£©¡ßÊýÁÐ{bn}µÄǰnÏîºÍΪSn=3n£®
¡àµ±n=1ʱ£¬b1=S1=3£¬
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=3n-3n-1=2•3n-1£¬
µ±n=1ʱ£¬2•3n-1=2¡Ùb1£¬
¡à${b_n}=\left\{\begin{array}{l}3£¬£¨n=1£©\\ 2•{3^{n-1}}£¨n¡Ý2£©\end{array}\right.$£®
¡àn=1ʱ£¬T1=a1b1=2¡Á3=6£¬
µ±n¡Ý2ʱ£¬${a}_{n}{b}_{n}=£¨6n-4£©•{2•3}^{n-1}$=£¨12n-8£©•3n-1£¬
Tn=4¡Á30+16¡Á3+28¡Á32+¡­+£¨12n-8£©•3n-1£¬¢Ù
3Tn=4¡Á3+16¡Á32+28¡Á33+¡­+£¨12n-8£©¡Á3n£¬¢Ú
¢Ù-¢Ú£¬µÃ£º-2Tn=4+12¡Á3+12¡Á32+¡­+12¡Á3n-1-£¨12n-8£©¡Á3n£¬
½âµÃ$n¡Ý2£¬{T_n}=£¨6n-7£©•{3^n}+9$£¬
×ÛÉÏ£¬${T_n}=£¨6n-7£©•{3^n}+9$£®
£¨3£©¼¯ºÏM=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}¡Ý¦Ë£¬n¡Ê{N^+}}\right.\}$£¬
ÓÉÉÏÃæ¿ÉµÃ$\frac{{{T_n}+8{S_n}-9}}{S_n^2}=\frac{6n+1}{3^n}$£¬Áî$f£¨n£©=\frac{6n+1}{3^n}$
Ôò$f£¨1£©=\frac{7}{3}$£¬$f£¨2£©=\frac{13}{9}$£¬$f£¨3£©=\frac{19}{27}$£¬$f£¨4£©=\frac{25}{81}$
ÏÂÃæÑо¿$f£¨n£©=\frac{6n+1}{3^n}$µÄµ¥µ÷ÐÔ£¬
¡ß$f£¨n+1£©-f£¨n£©=\frac{6n+7}{{{3^{n+1}}}}-\frac{6n+1}{3^n}=\frac{4-12n}{{{3^{n+1}}}}$
¡àn¡Ý1ʱ£¬f£¨n+1£©-f£¨n£©£¼0£¬f£¨n+1£©£¼f£¨n£©¼´f£¨n£©µ¥µ÷µÝ¼õ£¬
ËùÒÔ²»µÈʽ$\frac{{{n^2}+n}}{2^n}¡Ý¦Ë$£¬n¡ÊN+½âµÄ¸öÊýΪ3£¬
¡à$\frac{25}{81}£¼¦Ë£¼\frac{19}{27}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄÓ¦Ó㬿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®y=ln|x|B£®y=-x2+1C£®y=$\frac{1}{x}$D£®y=cosx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sinxcosx-cos2x-m£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚÓëµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Èôx¡Ê[-$\frac{¦Ð}{12}$£¬$\frac{¦Ð}{2}$]ʱ£¬·½³Ìf£¨x£©=0ÓÐʵÊý½â£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2-2axlnx-2a+1£¨a¡ÊR£©£®
£¨1£©Èôa=2£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôf£¨x£©¡Ý0¶ÔÈÎÒâ ÔÚx¡Ê[1£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÃݺ¯Êýf£¨x£©=xaµÄͼÏó¹ýµã£¨4£¬2£©£¬Áî${a_n}=\frac{1}{f£¨n+1£©+f£¨n£©}$£¨n¡ÊN*£©£¬¼ÇÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÔòS2018=£¨¡¡¡¡£©
A£®$\sqrt{2018}+1$B£®$\sqrt{2018}-1$C£®$\sqrt{2019}+1$D£®$\sqrt{2019}-1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®µãPÊǽ¹µãΪF1£¬F2µÄË«ÇúÏß$\frac{x^2}{25}-\frac{y^2}{16}=1$Éϵ͝µã£¬ÈôµãIÂú×ã $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$£¬ÔòµãIµÄºá×ø±êΪ¡À5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{an}Âú×ãa2017=2a2016+3a2015£¬Èô´æÔÚ²»Í¬µÄÁ½Ïîap£¬amʹµÃ$\sqrt{{a_p}•{a_m}}=3\sqrt{3}•{a_1}$£¬Ôò$\frac{1}{m}+\frac{4}{p}$µÄ×îСֵÊÇ$\frac{11}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÊýÁÐ{an}Âú×㣺${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$£¬a1=1£¬Ôòa2017=$\frac{2}{2017}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Äê¼¶×鳤ÐìÀÏʦΪ½ÌÓýͬѧÃǺÏÀíʹÓÃÊÖ»ú£¬ÔÚ±¾Äê¼¶ÄÚËæ»ú³éÈ¡ÁË30Ãûͬѧ×öÎʾíµ÷²é£®¾­Í³¼Æ£¬ÔÚÕâ30ÃûͬѧÖг¤Ê±¼äʹÓÃÊÖ»úµÄͬѧǡռ×ÜÈËÊýµÄ$\frac{2}{3}$£¬³¤Ê±¼äʹÓÃÊÖ»úÇÒÄê¼¶Ãû´Î200ÃûÒÔÄÚµÄͬѧÓÐ4ÈË£¬¶Ìʱ¼äÓÃÊÖ»ú¶øÄê¼¶Ãû´ÎÔÚ200ÃûÒÔÍâµÄͬѧÓÐ2ÈË£®
£¨¢ñ£©Çë¸ù¾ÝÒÑÖªÌõ¼þÍê³É2¡Á2ÁÐÁª±í£»
³¤Ê±¼äÓÃÊÖ»ú¶Ìʱ¼äÓÃÊÖ»ú×ܼÆ
Ãû´Î200ÒÔÄÚ
Ãû´Î200ÒÔÍâ
×ܼÆ
£¨¢ò£©ÅжÏÎÒÃÇÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Ñ§Ï°³É¼¨ÓëʹÓÃÊÖ»úʱ¼äÓйء±
¡¾¸½±í¼°¹«Ê½¡¿${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨K2¡Ýk0£©0.0100.0050.001
k06.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸