| A. | $\sqrt{2018}+1$ | B. | $\sqrt{2018}-1$ | C. | $\sqrt{2019}+1$ | D. | $\sqrt{2019}-1$ |
分析 先求出f(x)=${x}^{\frac{1}{2}}$,从而${a}_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}-\sqrt{n}$,由此利用裂项求和法能求出S2018.
解答 解:∵幂函数f(x)=xa的图象过点(4,2),∴4a=2,
解得a=$\frac{1}{2}$,∴f(x)=${x}^{\frac{1}{2}}$,
∵${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),∴${a}_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}-\sqrt{n}$,
∵{an}的前n项和为Sn,
∴S2018=$\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+…+\sqrt{2019}-\sqrt{2018}$=$\sqrt{2019}-1$.
故选:D.
点评 本题考查数列的前2018项的和的求法,是基础题,解题时要认真审题,注意幂函数、裂项求和法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行 | B. | 相交但不垂直 | C. | 垂直 | D. | 相交于点(2,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9千台 | B. | 8千台 | C. | 7千台 | D. | 6千台 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com