精英家教网 > 高中数学 > 题目详情
20.已知幂函数f(x)=xa的图象过点(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),记数列{an}的前n项和为Sn,则S2018=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2019}+1$D.$\sqrt{2019}-1$

分析 先求出f(x)=${x}^{\frac{1}{2}}$,从而${a}_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}-\sqrt{n}$,由此利用裂项求和法能求出S2018

解答 解:∵幂函数f(x)=xa的图象过点(4,2),∴4a=2,
解得a=$\frac{1}{2}$,∴f(x)=${x}^{\frac{1}{2}}$,
∵${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),∴${a}_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}-\sqrt{n}$,
∵{an}的前n项和为Sn
∴S2018=$\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+…+\sqrt{2019}-\sqrt{2018}$=$\sqrt{2019}-1$.
故选:D.

点评 本题考查数列的前2018项的和的求法,是基础题,解题时要认真审题,注意幂函数、裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|>2|{\overrightarrow{AB}}|$,则m的取值范围为(2$\sqrt{5}$,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,则$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l1:2x-ay-1=0过点(2,1),l2:x+2y=0,则直线l1和l2(  )
A.平行B.相交但不垂直C.垂直D.相交于点(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两个等差数列2,4,6…及2,5,8,…由这两个数列的共同项按从小到大的顺序组成一个新数列{an},数列{bn}的前n项和为Sn=3n
(1)求a2,a3,并写{an}的通项公式(可不用叙述过程);
(2)求出{bn}的通项公式,并求数列{anbn}的前n项和Tn
(3)记集合M=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}≥λ,n∈{N^+}}\right.\}$,若M的子集个数为3,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知,函数f(x)=|x+a|+|x-b|.
(1)当a=1,b=2时,求不等式f(x)<4的解集;
(2)若a,b∈R+,且$\frac{1}{a}+\frac{1}{b}=1$,求证:f(x)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数的图象y=cos2x向左平移$\frac{π}{4}$个单位后,得到函数y=g(x) 的图象,则y=g(x)的图象关于点($\frac{kπ}{2}$,0),k∈Z对称(填坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某产品的销售收入y1(万元)是产量x(千台)的函数:${y_1}=17{x^2}$(x>0),生产成本y2万元是产量x(千台)的函数:${y_2}=2{x^3}-{x^2}$(x>0),为使利润最大,应生产(  )
A.9千台B.8千台C.7千台D.6千台

查看答案和解析>>

同步练习册答案