分析 (1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)根据基本不等式的性质证明即可.
解答 解:(1)当a=1,b=2时,不等式f(x)<4化为|x+1|+|x-2|<4,
即$\left\{\begin{array}{l}{x≤-1}\\{-2x<3}\end{array}$或$\left\{\begin{array}{l}{-1<x<2}\\{3<4}\end{array}$或$\left\{\begin{array}{l}{x≥2}\\{2x<5}\end{array}$,
解得$-\frac{3}{2}<x≤-1$或-1<x<2或$2≤x<\frac{5}{2}$,
∴不等式f(x)<4的解集为$\{x|-\frac{3}{2}<x<\frac{5}{2}\}$;
(2)f(x)=|x+a|+|x-b|≥|(x+a)-(x-b)|
=|a+b|=$a+b=({a+b})({\frac{1}{a}+\frac{1}{b}})=2+\frac{b}{a}+\frac{a}{b}$$≥2+2\sqrt{\frac{b}{a}•\frac{a}{b}}=4$,
当且仅当$\frac{b}{a}=\frac{a}{b}$,即$b=a=\frac{1}{2}$时“=”成立,
所以f(x)≥4.
点评 本题考查了解绝对值不等式问题,考查基本不等式的性质以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2018}+1$ | B. | $\sqrt{2018}-1$ | C. | $\sqrt{2019}+1$ | D. | $\sqrt{2019}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6,3,1 | B. | 5,3,2 | C. | 5,4,1 | D. | 4,3,3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b,c都大于0 | B. | a,b,c至多有2个大于0 | ||
| C. | a,b,c至少有1个大于0 | D. | a,b,c至少有2个大于0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第1008 项 | B. | 第1009 项 | C. | 第2016项 | D. | 第2017项 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com