精英家教网 > 高中数学 > 题目详情
4.某商场出售三种品牌电脑,现存分别是60台、36台和24台,用分层抽样的方法从中抽取10台进行检测,这三种品牌的电脑依次应抽取的台数是(  )
A.6,3,1B.5,3,2C.5,4,1D.4,3,3

分析 根据分层抽样原理,计算这三种品牌的电脑依次应抽取的台数即可.

解答 解:根据分层抽样原理,从中抽取10台时,
这三种品牌的电脑依次应抽取的台数是
10×$\frac{60}{60+36+24}$=5,
10×$\frac{36}{60+36+24}$=3,
10×$\frac{24}{60+36+24}$=2.
故选:B.

点评 本题考查了分层抽样原理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)的定义域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a为小于0的常数)设x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,则a的范围是(-∞,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l1:2x-ay-1=0过点(2,1),l2:x+2y=0,则直线l1和l2(  )
A.平行B.相交但不垂直C.垂直D.相交于点(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知,函数f(x)=|x+a|+|x-b|.
(1)当a=1,b=2时,求不等式f(x)<4的解集;
(2)若a,b∈R+,且$\frac{1}{a}+\frac{1}{b}=1$,求证:f(x)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数的图象y=cos2x向左平移$\frac{π}{4}$个单位后,得到函数y=g(x) 的图象,则y=g(x)的图象关于点($\frac{kπ}{2}$,0),k∈Z对称(填坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知钝角△ABC中,三条边长为连续正整数.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x-1}$(a为常数)在($\frac{1}{4}$,$\frac{1}{2}$)内有唯一的极值点.
(1)求a的取值范围.
(2)若x1∈(0,$\frac{1}{2}$),x2∈(2,+∞),试判断f(x2)-f(x1)与$\frac{8}{9}$ln2+$\frac{2}{3}$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角520°的始边为x轴非负半轴,则它的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案