精英家教网 > 高中数学 > 题目详情
2.5个同学排成一横排照相.
(1)某甲不站在排头也不能在排尾的不同排法有多少种?
(2)甲、乙必须相邻的排法有多少种?
(3)甲、乙不能相邻的排法有多少种?

分析 (1)根据题意,假设5个人分别对应5个空位,甲不排在排头也不排在排尾,有3个位置可选;而其他4人对应其他4个位置,对其全排列,可得其排法数目,由分步计数原理计算可得答案;
(2)采用捆绑法.先排甲、乙,再与其他3名同学排列,问题得以解决.
(2)采用插空法,先排其余的3名同学,出现4个空位,将甲、乙插在空位中,问题得以解决.

解答 解:(1)假设5个人分别对应5个空位,甲不排在排头也不排在排尾,有3个位置可选;
则其他4人对应其他4个位置,有A44=24种情况,
则不同排列方法种数3×24=72种;
(2)分2步进行分析:
①、将甲乙看成一个整体,考虑甲乙之间的顺序,有A22=2种情况;
②、将这个整体与其他3名同学排列,有A44=24种情况;
则甲、乙必须相邻的排法有2×24=48种;
(3)分2步进行分析:
①、将除甲乙之外的3人全排列,有A33=6种顺序,排好后有4个空位,
②、在4个空位中任选2个,安排甲乙,有A42=12种情况,
则甲、乙不能相邻的排法有4×12=48种.

点评 本题考查排列、组合的运用,注意常见问题的处理方法,如相邻问题与不能相邻问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若tanθ=-2,求:
(1)$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$;
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2axlnx-2a+1(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)≥0对任意 在x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P是焦点为F1,F2的双曲线$\frac{x^2}{25}-\frac{y^2}{16}=1$上的动点,若点I满足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,则点I的横坐标为±5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正项等比数列{an}满足a2017=2a2016+3a2015,若存在不同的两项ap,am使得$\sqrt{{a_p}•{a_m}}=3\sqrt{3}•{a_1}$,则$\frac{1}{m}+\frac{4}{p}$的最小值是$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.
求证:PC∥平面BED.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,a1=1,则a2017=$\frac{2}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3-2x.
(1)若关于x的方程f(x)=a有三个不同的实数解,求a的取值范围.
(2)求过曲线f(x)上的点A(1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量$\overrightarrow m$=(sinB,cosB)与向量$\overrightarrow n=(0,\;-1)$的夹角为$\frac{π}{3}$,
求:(1)角B的大小;
(2)$\frac{a+c}{b}$的取值范围.

查看答案和解析>>

同步练习册答案