精英家教网 > 高中数学 > 题目详情
13.已知i是虚数单位,则$|{\frac{3+2i}{2-i}}|$=$\frac{{\sqrt{65}}}{5}$.

分析 利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.

解答 解:∵$\frac{3+2i}{2-i}=\frac{(3+2i)(2+i)}{(2-i)(2+i)}=\frac{4+7i}{5}=\frac{4}{5}+\frac{7}{5}i$,
∴$|{\frac{3+2i}{2-i}}|$=$\sqrt{(\frac{4}{5})^{2}+(\frac{7}{5})^{2}}=\frac{\sqrt{65}}{5}$.
故答案为:$\frac{{\sqrt{65}}}{5}$.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知以点$C(t,\frac{2}{t})$(t∈R,t≠0)为圆心的圆与x轴交点为O、A,与y轴交于点O、B,其中O为坐标原点.
(1)试写出圆C的标准方程,并证明△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,用4种不同的颜色对图中的5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻区域不能涂相同颜色,则不同的涂色方案有(  )种.
A.60B.72C.84D.96

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.《数学万花筒》第7页中谈到了著名的“四色定理”.问题起源于1852年的伦敦大学学院毕业生弗朗西斯•加斯里.他给自己的弟弟弗莱德里克写了一封信,信中提到了他认为应该很简单的一道小谜题.他一直尝试着给一张英国各郡的地图着色,在这个过程中,他发现使用四中颜色就可以实现他的目的,即使相邻的两个郡具有不同的颜色.“可以使用四种(或更少)颜色为平面上画出的每张地图着色,使任何相邻的两个地区的边界线具有不同的颜色吗?”他写道.
回答他这个问题用了124年.而且,即使现在,答案也依赖于大量的计算机辅助.目前还不知道四色原理的简单的概念性证明.但较简单的图形还是能够一步步检查得出.如:
若用红、黄、蓝、绿四种颜色给右边的地图着色,共有24种着色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=x2-2lnx的单调递减区间为(  )
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足${a_1}=2017,{a_{n\;+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}\;(n∈{N^*})$,则a2017的值为(  )
A.$\frac{1008}{1009}$B.$-\frac{1009}{1008}$C.2017D.$-\frac{1}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.《写给全人类的数学魔法书》第3部遇到任何数学题都能够解答的10种解题思路中有这样一道例题:“远望巍巍塔八层,红光点点倍加增,其灯五百一十,则顶层有2盏灯”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC中,AC=6,AB=3,若G为△ABC的重心,则$\overrightarrow{AG}$•$\overrightarrow{BC}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若不等式$\frac{1}{2}{x^2}-{y^2}$≤2cx(y-x)对任意满足x>y>0的实数x,y恒成立,则实数c的最大值为$\frac{\sqrt{2}}{2}-1$.

查看答案和解析>>

同步练习册答案