精英家教网 > 高中数学 > 题目详情
2.已知复数z1=1+i,z2=3-2i,z3=z2-z1,z4=z1•z2
(Ⅰ)z3,z4
(Ⅱ)在复平面上,复数z3,z4所对应的点分别为A,B,求|AB|.

分析 (I)利用复数的运算法则即可得出.
(II)利用数形结合、两点之间的距离公式即可得出.

解答 解:(Ⅰ)z3=(3-2i)-(1+i)=2-3i,z4=(1+i)•(3-2i)=5+i.
(Ⅱ)依题意知A(2,-3),B(5,1),
∴$|AB|=\sqrt{{{(5-2)}^2}+{{[{1-(-3)}]}^2}}=5$.

点评 本题考查了复数的运算法则、数形结合、两点之间的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如果复数(m2+i)(1+mi)(其中i是虚数单位)是纯虚数,则实数m=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式|x-1|-|x+1|≥a有解,则a的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若△ABC内角A、B、C所对的边分别为a、b、c,且${a^2}={c^2}-{b^2}+\sqrt{3}ba$,则∠C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.角-1540°为第三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=x4-3x3+1,则f′(x)=(  )
A.4x3-6x2B.4x3-9x2C.4x3+6x2D.4x3-6x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆锥双曲线E:x2-y2=1.
(Ⅰ)设曲线E'表示曲线E的y轴左边部分,若直线y=kx-1与曲线E'相交于A,B两点,求k的取值范围;
(Ⅱ)在条件(Ⅰ)下,如果$\overrightarrow{AB}=6\sqrt{3}$,且曲线E'上存在点C,使$\overrightarrow{OA}+\overrightarrow{OB}=m\overrightarrow{OC}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$在点(1,1)处的切线与坐标轴围成的三角形面积为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.y=4cosx-e|x|图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案