精英家教网 > 高中数学 > 题目详情
10.若△ABC内角A、B、C所对的边分别为a、b、c,且${a^2}={c^2}-{b^2}+\sqrt{3}ba$,则∠C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{4}$

分析 根据余弦定理,求出cosC的值,得出角C的大小.

解答 解:△ABC中,${a^2}={c^2}-{b^2}+\sqrt{3}ba$,
∴a2+b2-c2=$\sqrt{3}$ba;
由余弦定理得
cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{\sqrt{3}ba}{2ab}$=$\frac{\sqrt{3}}{2}$,
又C∈(0,π),
∴∠C=$\frac{π}{6}$.
故选:C.

点评 本题考查了利用余弦定理求角的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若不等式$\frac{1}{2}{x^2}-{y^2}$≤2cx(y-x)对任意满足x>y>0的实数x,y恒成立,则实数c的最大值为$\frac{\sqrt{2}}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式为an=$\frac{1}{3n-2}$,n∈N*
(1)求数列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n项和Sn
(2)设bn=anan+1,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,若b2=ac,则cos(A-C)+cosB+cos2B-2的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-2x2+x+3,
(1)$x∈[{\frac{2}{3},1}]$时求值域.
(2)若F(x)=f(x)+m有三个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.两直线x+y-5=0和直x-y=0的交点坐标为$(\frac{5}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z1=1+i,z2=3-2i,z3=z2-z1,z4=z1•z2
(Ⅰ)z3,z4
(Ⅱ)在复平面上,复数z3,z4所对应的点分别为A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知0<a<1,0<b<1,0<c<1,用分析法证明:$\frac{a+b+c+abc}{1+ab+bc+ca}≤1$
(2)已知a+b+c=0,ab+bc+ca>0且abc>0,用反证法证明:a,b,c都大于零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a+b>0,比较$\frac{a}{{b}^{2}}$+$\frac{b}{{a}^{2}}$与$\frac{1}{a}$+$\frac{1}{b}$的大小.并加以证明.

查看答案和解析>>

同步练习册答案