精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若b2=ac,则cos(A-C)+cosB+cos2B-2的值是-1.

分析 利用正弦定理化边的关系为角的关系,再由两角和与差的余弦及倍角公式化简求值.

解答 解:由b2=ac,得sin2B=sinAsinC,
∴cos(A-C)+cosB+cos2B-2
=cosAcosC+sinAsinC+cosB+1-2sin2B-2
=cosAcosC+sinAsinC+cosB-1-2sinAsinC
=cosAcosC-sinAsinC+cosB-1
=cos(A+C)+cosB-1
=-1.
故答案为:-1.

点评 本题考查两角和与差的余弦,考查正弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知船A在灯塔C北偏东85°且到C的距离为1km,船B在灯塔C西偏北25°且到C的距离为$\sqrt{3}$km,则A,B两船的距离为$\sqrt{7}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\frac{sin40°\sqrt{1+cos80°}}{\sqrt{1-2sin10°cos10°}+sin10°}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$,$\overrightarrow{b}$是任意两个向量,下列条件:①$\overrightarrow{a}$=$\overrightarrow{b}$;②|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;③$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反;④$\overrightarrow{a}$=0或$\overrightarrow{b}$=0;⑤$\overrightarrow{a}$与$\overrightarrow{b}$都是单位向量.其中,使向量$\overrightarrow{a}$与$\overrightarrow{b}$平行的有①③④(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式|x-1|-|x+1|≥a有解,则a的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx(x∈R).
(1)若函数f(x)的图象在点x=3处的切线与直线x+24y+1=0垂直,函数f(x)在x=1处取得极值,求函数f(x)的解析式.并确定函数的单调递减区间;
(2)若a=1,且函数f(x)在[-1,1]上减函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若△ABC内角A、B、C所对的边分别为a、b、c,且${a^2}={c^2}-{b^2}+\sqrt{3}ba$,则∠C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=x4-3x3+1,则f′(x)=(  )
A.4x3-6x2B.4x3-9x2C.4x3+6x2D.4x3-6x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(3-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,则f(-1)+f(log26)=(  )
A.3B.6C.9D.12

查看答案和解析>>

同步练习册答案