精英家教网 > 高中数学 > 题目详情
3.已知正项数列{an}满足2an+1=an+an+2,且S2n-1=an2,其中Sn为数列{an}的前n项和,若实数λ使得不等式$\frac{(n+8){a}_{n}+70}{λ}$≥n恒成立,则实数λ的最大值为$\frac{112}{3}$.

分析 正项数列{an}满足2an+1=an+an+2,可得数列{an}是等差数列,设公差为d.S2n-1=an2,可得a1=S1=${a}_{1}^{2}$>0,解得a1=1.又S3=${a}_{2}^{2}$,可得$3×1+\frac{3×2}{2}$d=(1+d)2,解得d,可得an=2n-1.不等式$\frac{(n+8){a}_{n}+70}{λ}$≥n化为:λ≤$\frac{(n+8)(2n-1)+70}{n}$=2n+$\frac{62}{n}$+15.利用不等式的性质即可得出.

解答 解:正项数列{an}满足2an+1=an+an+2,∴数列{an}是等差数列,设公差为d.
∵S2n-1=an2,∴a1=S1=${a}_{1}^{2}$>0,解得a1=1.
又S3=${a}_{2}^{2}$,∴$3×1+\frac{3×2}{2}$d=(1+d)2,解得d=2,-1(舍去).
∴an=1+2(n-1)=2n-1.
不等式$\frac{(n+8){a}_{n}+70}{λ}$≥n化为:λ≤$\frac{(n+8)(2n-1)+70}{n}$=2n+$\frac{62}{n}$+15.
∵2n+$\frac{62}{n}$+15≥$2×2\sqrt{n•\frac{31}{n}}$+15,经过验证可得:n=6时,取得最小值.
则实数λ的最大值为$2×6+\frac{62}{6}$+15=$\frac{112}{3}$.
故答案为:$\frac{112}{3}$.

点评 本题考查了等差数列的通项公式与求和公式、不等式的解法与性质、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:则方程f[g(x)]=0有且仅有6个根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,若他们3人向目标各发1枪,则目标没有被击中的概率为0.009.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在矩形ABCD中,AB=$\sqrt{2}$,BC=3,点E满足$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$,点F在边CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=1,则$\overrightarrow{AE}$•$\overrightarrow{BF}$=(  )
A.1B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{12}$).
(1)若sinθ=-$\frac{4}{5}$,θ∈($\frac{3π}{2}$,2π),求f(θ+$\frac{π}{6}$)的值;
(2)若x∈[$\frac{π}{4}$,$\frac{7π}{6}$],求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinx+cosy=$\frac{3}{5}$,则μ=sinx-cos2y的最大值为$\frac{21}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若函数f(x)=x3+bx2+cx+d的单调递减区间(-1,2)求b,c的值;
(2)设$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax$,若f(x)在$(\frac{2}{3},+∞)$上存在单调递增区间,求a的取值范围;
(3)已知函数f(x)=alnx-ax-3(a∈R),若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在区间(t,3)上总不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设z为纯虚数,z+2-i为实数,则z等于(  )
A.iB.-iC.i+1D.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数(a+i)(1+i)(a为实数,i为虚数单位)是纯虚数,则a=1.

查看答案和解析>>

同步练习册答案