(本小题满分14分)
设椭圆()的两个焦点是和(),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线()与交于不同的两点、,若线段的垂直平分线恒过点,求实数的取值范围.
(1)(2)(3)
【解析】
试题分析:解:(1)由已知,,
∴方程组有实数解,从而,故 …2分
所以,即的取值范围是. ……………4分
(2)设椭圆上的点到一个焦点的距离为,
则
(). ……………6分
∵,∴当时,,
于是,,解得 .
∴所求椭圆方程为. ……………8分
(3)由得 (*)
∵直线与椭圆交于不同两点, ∴△,即.① ………10分
设、,则、是方程(*)的两个实数解,
∴,∴线段的中点为,
又∵线段的垂直平分线恒过点,∴,
即,即(k)② ……………12分
由①,②得,,又由②得,
∴实数的取值范围是. ……………14分
考点:椭圆的方程和性质;直线的方程;两直线垂直的判定定理。
点评:本题第一小题也可这样来求解,椭圆跟y轴正半轴的交点为,若椭圆要与圆相交,则;第二小题可以结合椭圆的特点来求,当椭圆上的点是时,它到附近的焦点的距离就是最短距离;第三小题需要注意直线与椭圆相交时应满足的条件。
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com