精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10
(Ⅰ)求数列{an}与{bn}的通项公式;  
(Ⅱ)求数列{an•bn}的前n项和.
分析:(Ⅰ)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.
(Ⅱ)借助于错位相减法求出Tn的表达式;
解答:解:(Ⅰ)设等差数列的公差为d,等比数列的首项为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
2+3d+2q3=27
8+6d-2q3=10

解得
d=3
q=2

所以:an=3n-1,bn=2n
(Ⅱ)由(Ⅰ)知an•bn=(3n-1)•2n
设数列{an•bn}的前n项和为Tn=a1b1+a2b2+…+anbn
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
6×(1-2n)
1-2
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
点评:本题主要考查等差数列和等比数列的综合问题并考查计算能力.解决这类问题的关键在于熟练掌握基础知识,基本方法..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案