精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调增区间;
(Ⅱ)求函数y=f(x)的极值.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的概念及应用,导数的综合应用
分析:(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可.
(Ⅱ)利用(Ⅰ)的结论,分情况讨论函数y=f(x)的单调性,进而根据极值的定义,再得结论.
解答: 解:(Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,①
由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,
则g(x)=f′(x)+6x=3x2+(2m+6)x+n;
而g(x)图象关于y轴对称,所以-
2m+6
2×3
=0,所以m=-3,
代入①得n=0.
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>得x>2或x<0,
故f(x)的单调递增区间是(-∞,0),(2,+∞);
由f′(x)<0得0<x<2,
故f(x)的单调递减区间是(0,2).
(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),
令f′(x)=0得x=0或x=2.
当x变化时,f′(x)、f(x)的变化情况如下表:

由此可得:
当x=0时,f(x)取极大值f(O)=-2,当x=2时,f(x)取极小值-6;
点评:本小题主要考查函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(cosx)=sin2x,则f(sin150°)的值为(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
3
sinx+cosx=a在[0,2π]上有两个不同的实数解,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ω•x+φ)(A>0,ω>0,|φ|<
π
2
))的部分图象如图所示.
(1)请根据图象求出y=Asin(ω•x+φ)的解析式;
(2)当x∈[
5
6
π,
13
12
π]时,求出函数的最大值和最小值,并指出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=(-2n+5)×6n,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+3x.
(1)若x=3是f(x)的一个极值点,求f(x)在区间[2,a]上的最大值和最小值;
(2)若f(x)在x∈[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前项和记为Sn,a1=1,且满足an+1=2Sn+1(n∈N+).
(1)求证:数列{an}是等比数列;
(2)对n∈N+,在an与an+1之间插入3n个数,使这3n+2个数成等差数列,记插入的这3n个数的和为bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用导数证明:若x∈(0,
π
2
),则sinx<x<tanx.
(2)若a<
sinx
x
<b对x∈(0,
π
2
)恒成立,求a的最大值与b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).
(Ⅰ)根据茎叶图中的数据完成2×2列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留守儿童有关?
幸福感强幸福感弱合 计
留守儿童
非留守儿童
合 计
(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:Χ2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
;  附表:
P(x2≥k)0.0500.010
k3.8416.635

查看答案和解析>>

同步练习册答案