精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足
FA
+
FB
+
FC
=
0
|
FA
|+
|
FB
|+
|
FC
|=6
,则抛物线的方程为
 
分析:设向量
FA
FB
FC
的坐标分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|FC|,进而根据|
FA
|+
|
FB
|+
|
FC
|=6
,求得p,则抛物线方程可得.
解答:解:设向量
FA
FB
FC
的坐标分别为(x1,y1)(x2,y2)(x3,y3)由
FA
+
FB
+
FC
=
0
得x1+x2+x3=0
∵XA=x1+
p
2
,同理XB=x2+
p
2
,XC=x3+
p
2

∴|FA|=x1+
p
2
+
p
2
=x1+p,同理有|FB|=x2+
p
2
+
p
2
=x2+p,|FC|=x3+
p
2
+
p
2
=x3+p,
|
FA
|+
|
FB
|+
|
FC
|=6

∴x1+x2+x3+3p=6,
∴p=2,
∴抛物线方程为y2=4x.
故答案为:y2=4x.
点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

已知抛物线C的对称轴与y轴平行,顶点到原点的距离为5,若将抛物线C向上平移3个单位,则在x轴上截得的线段为原抛物线C在x轴上截得的线段的一半;若将抛物线C向左平移1个单位,则所得抛物线过原点,求抛物线C的方程.

查看答案和解析>>

同步练习册答案