精英家教网 > 高中数学 > 题目详情
5.下列各无穷数列中,极限存在的是(  )
A.1,0,1,0,1…B.$\frac{1}{2}$,1,$\frac{1}{4}$,1,$\frac{1}{8}$,1,$\frac{1}{16}$,1…
C.1,0,$\frac{1}{2}$,0,$\frac{1}{3}$,0,$\frac{1}{4}$,0…D.1+$\frac{1}{2}$,$\frac{1}{2}$,1+$\frac{1}{3}$,$\frac{1}{3}$,1+$\frac{1}{4}$,$\frac{1}{4}$,…

分析 C中n是奇数时,其极限为0,n为偶数时,均为0,即可得出结论.

解答 解:由题意,C中n是奇数时,其极限为0,n为偶数时,均为0,
∴数列的极限存在,且为0,
故选:C.

点评 本题考查数列的极限,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1
(1)求a4的值.
(2)证明:{an-1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)=$\frac{3}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα=3,求
(1)sin2α;
(2)$\frac{sinα+2cosα}{2sinα-cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A={x|x<1},B={x|x2+2x>0},则A∩B=(  )
A.(0,1)B.(-∞,-2)C.(-2,0)D.(-∞,-2)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},求2a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是一个无盖的正方体盒子展开后的平面图,A,B,C展开图是上的三点,则在正方体盒子中,∠ABC=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=3,an+1=$\frac{4{a}_{n}+4}{{a}_{n}+4}$.求证:数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\frac{1}{2}$lg4-lg$\frac{1}{5}$=1.

查看答案和解析>>

同步练习册答案