精英家教网 > 高中数学 > 题目详情
10.若曲线的焦点恰好是曲线的右焦点,且交点的连线过点,则曲线的离心率为
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知焦点在x轴上,离心率为的椭圆的一个顶点是抛物线的焦点,过椭圆右焦点F的直线l交椭圆于A、B两点,交y轴于点M,且
(1)求椭圆的方程;
(2)证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的标准方程;
(2)设直线与椭圆交于不同两点,请问是否存在这样的
直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若
的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN
MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4-1:几何证明选讲
△ABC内接于⊙O,AB=AC,直线MN切⊙O于C,弦BD∥MN,AC、BD交于点E
(1)求证:△ABE≌△ACD
(2)AB=6,BC=4,求AE

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,椭圆C:的右焦点为,直线的方程为,点A在直线上,线段AF交椭圆C于点B,若,则直线AF的倾斜角的大小为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则直线和曲线的大致图形可以是                                                       (     )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,一个焦点为(,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是      

查看答案和解析>>

同步练习册答案