精英家教网 > 高中数学 > 题目详情

数列{an}中,数学公式,S2n=a1+a2+…+a2n,则数学公式=________.


分析:根据通项公式的特点,奇数项和偶数项构成等比数列,分别求出奇数项和与偶数项和,然后加在一起求s2n,再求极限.
解答:∵
∴当数列的项数为2n时,奇数项和偶数都是n项,
∴奇数项和s1=a1+a3+a5+…+a2n-1=
==
偶数项和s2=a2+a4+…+a2n=-2(
=-2×=-(1-
∴s2n=s1+s2=(1-),则s2n=
故答案为:
点评:由通项公式的特点将该数列分成两个等比数列,然后分别求和,也成为分组求和法,即把非特殊数列的求和问题化为等差(等比)数列的求和问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(Ⅰ)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2-2010,求整数q的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(Ⅲ)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若对于任意的n∈N*,总有
n+2
n(n+1)
=
A
n
+
B
n+1
成立,求常数A,B的值;
(2)在数列{an}中,a1=
1
2
an=2an-1+
n+2
n(n+1)
(n≥2,n∈N*),求通项an
(3)在(2)题的条件下,设bn=
n+1
2(n+1)an+2
,从数列{bn}中依次取出第k1项,第k2项,…第kn项,按原来的顺序组成新的数列{cn},其中cn=bkn,其中k1=m,kn+1-kn=r∈N*.试问是否存在正整数m,r使
lim
n→+∞
(c1+c2+…+cn)=S
4
61
<S<
1
13
成立?若存在,求正整数m,r的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、若数列An:a1,a2,…,an(n≥2)满足|ak+1-ak|=1(k=1,2,…,n-1),则称An为E数列,记S(An)=a1+a2+…+an
(Ⅰ)写出一个E数列A5满足a1=a3=0;
(Ⅱ)若a1=12,n=2000,证明:E数列An是递增数列的充要条件是an=2011;
(Ⅲ)在a1=4的E数列An中,求使得S(An)=0成立得n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},首项a 1=3且2a n=S n•S n-1 (n≥2).
(1)求证:{
1Sn
}是等差数列,并求公差;
(2)求{a n }的通项公式;
(3)数列{an}中是否存在自然数k0,使得当自然数k≥k0时使不等式ak>ak+1对任意大于等于k的自然数都成立,若存在求出最小的k值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源:山东省聊城市2006—2007学年度第一学期高三年级期中考试、数学试题(文科) 题型:022

在数列{an}中,又s,则数列{bn}的前n项和为________

查看答案和解析>>

同步练习册答案