精英家教网 > 高中数学 > 题目详情
20.已知一个等腰直角三角形的高为2,则其直观图的面积为(  )
A.2B.$\sqrt{2}$C.1D.$\frac{\sqrt{2}}{2}$

分析 求出原三角形的面积,进而根据直观图面积和原图面积的关系,得到答案.

解答 解:∵等腰直角三角形的高为2,
∴腰直角三角形的底为4
∴△ABC的面积S=$\frac{1}{2}$×2×4=4,
用斜二侧画法画出它的直观图的面积S′=4×$\frac{\sqrt{2}}{4}$=$\sqrt{2}$,
故选:B.

点评 本题考查水平放置的平面图形的直观图斜二测画法,也可利用原图和直观图的面积关系求解.属基础知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.数列{an}满足a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2015}}}}$=(  )
A.$\frac{4028}{2015}$B.$\frac{4030}{2016}$C.$\frac{2013}{2014}$D.$\frac{2012}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为30°,且$|\overrightarrow a|=\sqrt{3},|\overrightarrow b|=1$,设$\overrightarrow m=\overrightarrow a+\overrightarrow b,\overrightarrow n=\overrightarrow a-\overrightarrow b$,则向量$\overrightarrow m$在$\overrightarrow n$方向上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求△ABC各角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知实数p,q,r满足:p+q+r=m,且p2+q2+r2=m(m>0).
(1)当r=$\frac{1}{2}$,求m的取值范围;
(2)当m=1,且p,q都不为0,求$\frac{1}{p}$+$\frac{1}{q}$的取值范围;
(3)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是以a为首项,q为公比的等比数列,Sn为它的前n项和.
(1)当S1,S3,S4成等差数列时,求q的值;
(2)若bn=anan+1(n∈N+),试求数列{bn}的前n项和Sn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=2,an=4an-1+6.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{2+{a}_{n}}{{a}_{n}{a}_{n+1}}$}前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(x,3-x)$,$\overrightarrow b=(-1,3-x)$,若$\overrightarrow a∥\overrightarrow b$,则x=3或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{{\sqrt{3}}}{2}-\sqrt{3}$sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到离它最近的对称轴的距离为$\frac{π}{4}$.
(1)求ω的值;
(2)求f(x)在区间[π,$\frac{3π}{2}$]上的最大值和最小值,并求取得最大值与最小值时相应的x的值.

查看答案和解析>>

同步练习册答案