精英家教网 > 高中数学 > 题目详情
已知点F(1,0),直线l:x=2.设动点P到直线l的距离为d,且|PF|=d,d.
(1)求动点P的轨迹方程;
(2)若·=,求向量的夹角.
(1) 轨迹方程为+y2=1(x).
(2)θ=arccos
(1)根据椭圆的第二定义知,点P的轨迹为椭圆.由条件知c=1,=2,∴a=.
e===满足|PF|=d.
P点的轨迹为+=1.
d=x,且d,
≤2-x.∴x.
∴轨迹方程为+y2=1(x).
(2)由(1)可知,P点的轨迹方程为+y2=1(x),∴F(1,0)、P(x0,y0).
=(1,0),=(x0,y0),=(1-x0,-y0).
·=,∴1-x0=.
x0=,y0.
·=||·||·cosθ,
∴1·x0+0·y0=·1·cosθ.
∴cosθ====.
θ=arccos.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△ABC中,已知B(-2,0)、C(2,0),ADBC于点D,△ABC的垂心为H,且=.

(1)求点H(x,y)的轨迹G的方程;
(2)已知P(-1,0)、Q(1,0),M是曲线G上的一点,那么,,能成等差数列吗?若能,求出M点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的椭圆的标准方程:
(1)两个焦点坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);
(2)焦点在y轴上,且经过两个点(0,2)和(1,0);
(3)经过P(-2,1),Q(,-2)两点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分已知相的中心在原点,焦点在x轴上,离心率为,点F1、F2分别是椭圆的左、右焦点,
直线x=2是椭圆的准线方程,直线与椭圆C
交地不同的两点A、B。 (I)求椭圆C的方程;(II)若在椭圆C上存在点Q,满足(O为坐标原点),求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

M到一个定点F(0,2)的距离和它到一条定直线y=8的距离之比是1∶2,则M点的轨迹方程是?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知中心在原点的椭圆经过点,则该椭圆的半长轴长的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点和短轴的两个端点构成一个正三角形,则该椭圆的离心率为(    )
A.B.
C.D.以上都不正确

查看答案和解析>>

同步练习册答案