2£®ÔÚ¶ÔÈËÃǵÄÐÝÏз½Ê½µÄÒ»´Îµ÷²éÖУ¬¹²µ÷²éÁË124ÈË£¬ÆäÖÐÅ®ÐÔ70ÈË£¬ÄÐÐÔ54ÈË£¬Å®ÐÔÖÐÓÐ43ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÆäÓàÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£»ÄÐÐÔÖÐÓÐ21ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÆäÓàÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£®
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£»
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏ£¬ÈÏΪÐÝÏз½Ê½ÓëÐÔ±ðÓйØÏµ£®¶ÀÁ¢ÐÔ¼ìÑé¹Û²ìÖµ¼ÆË㹫ʽ$k=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£©0.500.250.150.050.0250.010.005
k00.4551.3232.0723.8415.0246.6357.879

·ÖÎö 1£©¸ù¾Ý¹²µ÷²éÁË124ÈË£¬ÆäÖÐÅ®ÐÔ70ÈË£¬ÄÐÐÔ54ÈË£®Å®ÐÔÖÐÓÐ43ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ27È˵ÄÐÝÏз½Ê½ÊÇÔ˶¯£»ÄÐÐÔÖÐÓÐ21ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ33ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£®µÃµ½ÁÐÁª±í£®
£¨2£©¸ù¾ÝÁÐÁª±íÖÐËù¸øµÄÊý¾Ý×ö³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϵõ½ÓÐ97.5%µÄ°ÑÎÕÈÏΪÐÔ±ðÓëÐÝÏз½Ê½Óйأ®

½â´ð ½â£º£¨1£©

¿´µçÊÓÔ˶¯ºÏ¼Æ
ÄÐÐÔ213354
Å®ÐÔ432770
ºÏ¼Æ6460124
---------------£¨6·Ö£©
£¨2£©${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}=\frac{124¡Á£¨43¡Á33-21¡Á27£©}{70¡Á54¡Á64¡Á60}¡Ö6.201£¼6.635$
ËùÒÔ²»ÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪÐÝÏз½Ê½ÓëÐÔ±ðÓйØÏµ----------£¨12·Ö£©

µãÆÀ ¶ÀÁ¢ÐÔ¼ìÑéÊÇ¿¼²éÁ½¸ö·ÖÀà±äÁ¿ÊÇ·ñÓйØÏµ£¬²¢ÇÒÄܽϾ«È·µÄ¸ø³öÕâÖÖÅжϵĿɿ¿³Ì¶ÈµÄÒ»ÖÖÖØÒªµÄͳ¼Æ·½·¨£¬Ö÷ÒªÊÇͨ¹ýk2µÄ¹Û²âÖµÓëÁÙ½çÖµµÄ±È½Ï½â¾öµÄ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}£¬x£¼0}\\{asin2x£¬0¡Üx¡Ü¦Ð}\end{array}\right.$£®Èô·½³Ìf£¨x£©=1ÓÐ3¸ö²»Í¬µÄʵÊý¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®{-1}¡È£¨1£¬+¡Þ£©C£®£¨-¡Þ£¬-1£©D£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª${£¨\sqrt{x}+\frac{2}{x^2}£©^n}$µÄÕ¹¿ªÊ½ÖУ¬
£¨1£©ÈôµÚ5ÏîµÄϵÊýÓëµÚ3ÏîµÄϵÊýÖ®±ÈÊÇ56©s3£¬ÇóÕ¹¿ªÊ½Öеij£ÊýÏ
£¨2£©ÇóÖ¤£º¶þÏîʽ${£¨\sqrt{x}+\frac{2}{x^2}£©^n}$Óë${£¨\sqrt{x}+\frac{2}{x^2}£©^{n+1}}$µÄÕ¹¿ªÊ½Öв»¿ÉÄܶ¼Óг£ÊýÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè$\overrightarrow a$ÊÇ·ÇÁãÏòÁ¿£¬¦ËΪ¸ºÊµÊý£¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow a$Óë$¦Ë\overrightarrow a$µÄ·½ÏòÏà·´B£®$|{¦Ë\overrightarrow a}|¡Ý|{\overrightarrow a}|$
C£®$\overrightarrow a$Óë${¦Ë^2}\overrightarrow a$µÄ·½ÏòÏàͬD£®$|{¦Ë\overrightarrow a}|=|¦Ë|\overrightarrow a$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÔ²x2+y2=4£¬Ö±Ïßl£ºy=x+b£¬Ô²ÉÏÖÁÉÙÓÐÈý¸öµãµ½Ö±ÏßlµÄ¾àÀë¶¼ÊÇ1£¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-$\sqrt{2}$£¬$\sqrt{2}$]B£®{-$\sqrt{2}$£¬$\sqrt{2}$}C£®£¨-$\sqrt{2}$£¬$\sqrt{2}$£©D£®[0£¬$\sqrt{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈçͼÊÇÒ»¸öËã·¨µÄÁ÷³Ìͼ£¬»Ø´ðÏÂÃæµÄÎÊÌ⣺µ±ÊäÈëµÄֵΪ3ʱ£¬Êä³öµÄ½á¹ûΪ20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2-2n£¬Ôò a2+a10=£¨¡¡¡¡£©
A£®20B£®19C£®18D£®17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èô£¨m2-m£©+£¨m2-3m+2£©iÊÇ´¿ÐéÊý£¬ÔòʵÊýmµÄֵΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2£¬ÔÚx=1ʱÓм«´óÖµ3£»
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©ÔÚ[-1£¬2]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸