精英家教网 > 高中数学 > 题目详情
3.在等比数列{an}中,a1=a,前n项和为Sn,若数列{an+1}成等差数列,则Sn等于(  )
A.an+1-aB.n(a+1)C.naD.(a+1)n-1

分析 设等比为q,公差为d,推导出a3=aq2=a+2d,a2=aq=a+d,从而得到d=0,q=1,由此能求出Sn

解答 解:∵在等比数列{an}中,a1=a,前n项和为Sn,数列{an+1}成等差数列,
设等比为q,b1=a+1,公差为d,
a2=aq,b2=aq+1=a+1+d,a3=aq2,b3=aq2+1=a+1+2d,
∴a3=aq2=a+2d,a2=aq=a+d,
∵${{a}_{2}}^{2}={a}_{1}{a}_{3}$,
∴(a+d)2=a2+2da+d2=(a+2d)a,
解得d=0,q=1,
∴Sn=na.
故选:C.

点评 本题考查等比数列的前n项和的求法,是中档题,解题时要认真审题,注意等比数列和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x2≤1},集合B={-2,-1,0,1,2},则A∩B={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A仅由三个元素a,a+d,a+2d组成,集合B也仅由三个元素a,aq,aq2组成,其中a为常数,若A=B,求d、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(2-x)=x2-x-1,则f(x)等于(  )
A.x2+1B.x2-x-1C.x2-3x+1D.x2-2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}的前n项和为Sn,若a1=20,S10=S15,则当n=12或13时,Sn取最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标xoy 系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcosθ=2sin2θ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若曲线C1:$\left\{\begin{array}{l}x=3+rcosα\\ y=-2+rsinα\end{array}$(α为参数)与曲线C所表示的图形都相切,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,满足${a_n}+{S_n}=A{n^2}+Bn+C$(A≠0,n∈N*).
(1)当C=1时,
①设bn=an-n,若${a_1}=\frac{3}{2}$,${a_2}=\frac{9}{4}$.求实数A,B的值,并判定数列{bn}是否为等比数列;
②若数列{an}是等差数列,求$\frac{B-1}{A}$的值;
(2)当C=0时,若数列{an}是等差数列,a1=1,且?n∈N*,$λ-\frac{3}{n+1}≤\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图程序运行的结果是96.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设常数λ>0,a>0,函数f(x)=$\frac{{x}^{2}}{λ+x}$-alnx.
(1)当a=$\frac{3}{4}$λ时,若f(x)最小值为0,求λ的值;
(2)对任意给定的正实数λ,a,证明:存在实数x0,当x>x0时,f(x)>0.

查看答案和解析>>

同步练习册答案