9£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Âú×ã${a_n}+{S_n}=A{n^2}+Bn+C$£¨A¡Ù0£¬n¡ÊN*£©£®
£¨1£©µ±C=1ʱ£¬
¢ÙÉèbn=an-n£¬Èô${a_1}=\frac{3}{2}$£¬${a_2}=\frac{9}{4}$£®ÇóʵÊýA£¬BµÄÖµ£¬²¢Åж¨ÊýÁÐ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ»
¢ÚÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬Çó$\frac{B-1}{A}$µÄÖµ£»
£¨2£©µ±C=0ʱ£¬ÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬a1=1£¬ÇÒ?n¡ÊN*£¬$¦Ë-\frac{3}{n+1}¡Ü\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¢ÙÔÚµÝÍÆÊ½ÖзֱðÈ¡n=1£¬2£¬µÃµ½Á½¸öµÈʽ£¬È»ºó´úÈë${a_1}=\frac{3}{2}$£¬${a_2}=\frac{9}{4}$£¬µÃµ½¹ØÓÚA£¬BµÄ¶þÔªÒ»´Î·½³Ì£¬Çó½âA£¬BµÄÖµ£¬°ÑA£¬BµÄÖµ´ú»ØµÝÍÆÊ½£¬È»ºóÈ¡n=n+1µÃÁíÒ»µÝÍÆÊ½£¬Á½Ê½Ïà¼õºóÕûÀí¼´¿ÉµÃµ½ÊýÁÐ{an-n}ÊǵȱÈÊýÁУ¬¼´ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
¢ÚÉè³öµÈ²îÊýÁÐ{an}µÄͨÏʽ£¬ÀûÓÃSn=$\frac{£¨{a}_{1}+{a}_{n}£©n}{2}$д³öÆäǰnÏîºÍ£¬´úÈëan+Sn=An2+Bn+1ºóÓÉϵÊýÏàµÈÇó³öA£¬B£¬C£¬Ôò´ð°¸¿ÉÇó£»
£¨2£©ÓÉÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒC=0ÇóµÃB=3A£¬½øÒ»²½ÇóµÃA£¬BµÄÖµ£¬µÃµ½µÈ²îÊýÁеĹ«²î£¬Çó³öÊýÁÐ{an}µÄͨÏʽ£¬´úÈë$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$£¬¿ª·½ºóÁÑÏÇóµÃ$\sum_{i=1}^{n}\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$£¬ÔÚ´úÈë$¦Ë-\frac{3}{n+1}¡Ü\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$£¬·ÖÀë²ÎÊý¦ËºóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¢ÙÓÉan+Sn=An2+Bn+1£¬
·Ö±ðÁîn=1£¬2´úÈëÉÏʽµÃ£º$\left\{\begin{array}{l}{2{a}_{1}=A+B+1}\\{2{a}_{2}+{a}_{1}=4A+2B+1}\end{array}\right.$£¬
ÓÖa1=$\frac{3}{2}$£¬a2=$\frac{9}{4}$£¬½âµÃ$\left\{\begin{array}{l}{A=\frac{1}{2}}\\{B=\frac{3}{2}}\end{array}\right.$£®
¡àan+Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n+1£¬
an+1+Sn+1=$\frac{1}{2}$£¨n+1£©2+$\frac{3}{2}$£¨n+1£©+1£¬
Á½Ê½×÷²îµÃ£º2an+1-an=n+2£®Ôòan+1-£¨n+1£©=$\frac{1}{2}$£¨an-n£©£®
¡ßa1-1=$\frac{1}{2}$¡Ù0£¬
¡àÊýÁÐ{an-n}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ®
¡ßbn=an-n£¬
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
¢Ú¡ßÊýÁÐ{an}ÊǵȲîÊýÁУ¬
¡àÉèan=dn+c£®
ÔòSn=$\frac{£¨d+c+dn+c£©n}{2}$=$\frac{d}{2}$n2+£¨c+$\frac{d}{2}$£©n£®
¡àan+Sn=$\frac{d}{2}$n2+£¨c+$\frac{3d}{2}$£©n+c£®
¡àA=$\frac{d}{2}$£¬B=c+$\frac{3d}{2}$£¬c=1£®
Ôò$\frac{B-1}{A}$=$\frac{\frac{3d}{2}+1-1}{\frac{d}{2}}=3$£»
£¨2£©ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬
¡àan+Sn=a1+£¨n-1£©d+na1+$\frac{n£¨n-1£©d}{2}$=$\frac{d}{2}{n}^{2}+£¨{a}_{1}+\frac{d}{2}£©n+{a}_{1}-d$¨TAn2+Bn+C£¬
¡àA=$\frac{d}{2}$£¬B=${a}_{1}+\frac{d}{2}$£¬C=a1-d£¬
¡à3A-B+C=$\frac{3d}{2}-£¨{a}_{1}+\frac{d}{2}£©$+£¨a1-d£©=0£¬Òò´Ë3A-B+C=0£®
ÓÖC=0£¬{an}ÊÇÊ×ÏîΪ1µÄµÈ²îÊýÁУ¬
¡àB=3A£¬Ôò1+1=A+B=4A£¬µÃA=$\frac{1}{2}$£¬B=$\frac{3}{2}$£¬
¡àd=2A=1£¬Ôòan=n£®
¡à$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$=$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{£¨n+1£©^{2}}}$=$\sqrt{\frac{{n}^{2}£¨n+1£©^{2}+£¨n+1£©^{2}+{n}^{2}}{{n}^{2}£¨n+1£©^{2}}}$
=$\frac{n£¨n+1£©+1}{n£¨n+1£©}$=1+$\frac{1}{n}-\frac{1}{n+1}$£¬
¡à$\sum_{i=1}^{n}\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$=$\sum_{i=1}^{n}£¨1+\frac{1}{i}+\frac{1}{i+1}£©$=$n+1-\frac{1}{n+1}$£®
Èô?n¡ÊN*£¬$¦Ë-\frac{3}{n+1}¡Ü\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$£¬
Ôò$¦Ë-\frac{3}{n+1}¡Ün+1-\frac{1}{n+1}$£¬¼´$¦Ë£¼n+1+\frac{2}{n+1}$£®
¡ßµ±n=1ʱ£¬$£¨n+1+\frac{2}{n+1}£©_{min}=3$£¬
¡à¦Ë£¼3£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬¿¼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬ÑµÁ·ÁË´ý¶¨ÏµÊý·¨ºÍÁÑÏîÏàÏû·¨ÇóºÍ£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ºÖªÖ±Ïß1µÄ·½³ÌΪ2x+y-4=0£¬µãAµÄ×ø±êΪ£¨3£¬3£©£®
£¨1£©Çó¹ýµãAÇÒÓëÖ±ÏßlƽÐеÄÖ±ÏßmµÄ·½³Ì£»
£¨2£©ÈôµãBµ½Ö±Ïß1µÄ¾àÀëΪ$\sqrt{5}$£¬ÇÒÖ±ÏßABÓëÖ±Ïßl´¹Ö±£¬ÇóµãBµÄ×ø¼Ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¸÷ÏΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn=$\frac{{a}_{n}£¨{a}_{n}+1£©}{2}$£®ÊýÁÐ{bn}Âú×ãbn=$\frac{1}{4{{a}^{2}}_{n}-1}$£¬ÔòÊýÁÐ{bn}µÄǰnÏîºÍTn=$\frac{n}{2n+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=a£¬Ç°nÏîºÍΪSn£¬ÈôÊýÁÐ{an+1}³ÉµÈ²îÊýÁУ¬ÔòSnµÈÓÚ£¨¡¡¡¡£©
A£®an+1-aB£®n£¨a+1£©C£®naD£®£¨a+1£©n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÓÃ1£¬2£¬3ºÍÁ½¸ö0Ëæ»ú×é³ÉÒ»¸ö5λÊý£¬ÔòÕâ¸ö5λÊýÖÐÁ½¸ö0ÏàÁڵĸÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ex£¬g£¨x£©=lnx-lna£¨aΪ³£Êý£¬e=2.718¡­£©£¬ÇÒº¯Êýy=f£¨x£©ÔÚx=0´¦µÄÇÐÏߺÍy=g£¨x£©ÔÚx=a´¦µÄÇÐÏß»¥ÏàÆ½ÐУ®
£¨¢ñ£©Çó³£ÊýaµÄÖµ£»
£¨¢ò£©Èô´æÔÚxʹ²»µÈʽ$x-m£¾\sqrt{x}•f£¨x£©$³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÇúÏßf£¨x£©=x2ÉÏÁ½µãA£¨2£¬4£©ºÍB£¨2+d£¬f£¨2+d£©£©£©£¬×÷¸îÏߣ¬µ±d=0.1ʱ£¬¸îÏßµÄбÂÊÊÇ£¨¡¡¡¡£©
A£®4B£®4.1C£®4.2D£®4.3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁк¯ÊýÖмÈÊÇÆæº¯ÊýÓÖÔÚÇø¼ä£¬[-1£¬1]Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®y=sinxB£®y=-|x+1|C£®$y=ln\frac{2-x}{2+x}$D£®y=$\frac{1}{2}$£¨2x+2-x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏA={x|£¨x-1£©£¨x+2£©£¼0}£¬B={x|-3£¼x£¼0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-2£©B£®£¨-2£¬0£©C£®£¨0£¬1£©D£®£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸