·ÖÎö £¨1£©¢ÙÔÚµÝÍÆÊ½ÖзֱðÈ¡n=1£¬2£¬µÃµ½Á½¸öµÈʽ£¬È»ºó´úÈë${a_1}=\frac{3}{2}$£¬${a_2}=\frac{9}{4}$£¬µÃµ½¹ØÓÚA£¬BµÄ¶þÔªÒ»´Î·½³Ì£¬Çó½âA£¬BµÄÖµ£¬°ÑA£¬BµÄÖµ´ú»ØµÝÍÆÊ½£¬È»ºóÈ¡n=n+1µÃÁíÒ»µÝÍÆÊ½£¬Á½Ê½Ïà¼õºóÕûÀí¼´¿ÉµÃµ½ÊýÁÐ{an-n}ÊǵȱÈÊýÁУ¬¼´ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
¢ÚÉè³öµÈ²îÊýÁÐ{an}µÄͨÏʽ£¬ÀûÓÃSn=$\frac{£¨{a}_{1}+{a}_{n}£©n}{2}$д³öÆäǰnÏîºÍ£¬´úÈëan+Sn=An2+Bn+1ºóÓÉϵÊýÏàµÈÇó³öA£¬B£¬C£¬Ôò´ð°¸¿ÉÇó£»
£¨2£©ÓÉÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒC=0ÇóµÃB=3A£¬½øÒ»²½ÇóµÃA£¬BµÄÖµ£¬µÃµ½µÈ²îÊýÁеĹ«²î£¬Çó³öÊýÁÐ{an}µÄͨÏʽ£¬´úÈë$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$£¬¿ª·½ºóÁÑÏÇóµÃ$\sum_{i=1}^{n}\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$£¬ÔÚ´úÈë$¦Ë-\frac{3}{n+1}¡Ü\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$£¬·ÖÀë²ÎÊý¦ËºóµÃ´ð°¸£®
½â´ð ½â£º£¨1£©¢ÙÓÉan+Sn=An2+Bn+1£¬
·Ö±ðÁîn=1£¬2´úÈëÉÏʽµÃ£º$\left\{\begin{array}{l}{2{a}_{1}=A+B+1}\\{2{a}_{2}+{a}_{1}=4A+2B+1}\end{array}\right.$£¬
ÓÖa1=$\frac{3}{2}$£¬a2=$\frac{9}{4}$£¬½âµÃ$\left\{\begin{array}{l}{A=\frac{1}{2}}\\{B=\frac{3}{2}}\end{array}\right.$£®
¡àan+Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n+1£¬
an+1+Sn+1=$\frac{1}{2}$£¨n+1£©2+$\frac{3}{2}$£¨n+1£©+1£¬
Á½Ê½×÷²îµÃ£º2an+1-an=n+2£®Ôòan+1-£¨n+1£©=$\frac{1}{2}$£¨an-n£©£®
¡ßa1-1=$\frac{1}{2}$¡Ù0£¬
¡àÊýÁÐ{an-n}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ®
¡ßbn=an-n£¬
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
¢Ú¡ßÊýÁÐ{an}ÊǵȲîÊýÁУ¬
¡àÉèan=dn+c£®
ÔòSn=$\frac{£¨d+c+dn+c£©n}{2}$=$\frac{d}{2}$n2+£¨c+$\frac{d}{2}$£©n£®
¡àan+Sn=$\frac{d}{2}$n2+£¨c+$\frac{3d}{2}$£©n+c£®
¡àA=$\frac{d}{2}$£¬B=c+$\frac{3d}{2}$£¬c=1£®
Ôò$\frac{B-1}{A}$=$\frac{\frac{3d}{2}+1-1}{\frac{d}{2}}=3$£»
£¨2£©ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬
¡àan+Sn=a1+£¨n-1£©d+na1+$\frac{n£¨n-1£©d}{2}$=$\frac{d}{2}{n}^{2}+£¨{a}_{1}+\frac{d}{2}£©n+{a}_{1}-d$¨TAn2+Bn+C£¬
¡àA=$\frac{d}{2}$£¬B=${a}_{1}+\frac{d}{2}$£¬C=a1-d£¬
¡à3A-B+C=$\frac{3d}{2}-£¨{a}_{1}+\frac{d}{2}£©$+£¨a1-d£©=0£¬Òò´Ë3A-B+C=0£®
ÓÖC=0£¬{an}ÊÇÊ×ÏîΪ1µÄµÈ²îÊýÁУ¬
¡àB=3A£¬Ôò1+1=A+B=4A£¬µÃA=$\frac{1}{2}$£¬B=$\frac{3}{2}$£¬
¡àd=2A=1£¬Ôòan=n£®
¡à$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$=$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{£¨n+1£©^{2}}}$=$\sqrt{\frac{{n}^{2}£¨n+1£©^{2}+£¨n+1£©^{2}+{n}^{2}}{{n}^{2}£¨n+1£©^{2}}}$
=$\frac{n£¨n+1£©+1}{n£¨n+1£©}$=1+$\frac{1}{n}-\frac{1}{n+1}$£¬
¡à$\sum_{i=1}^{n}\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$=$\sum_{i=1}^{n}£¨1+\frac{1}{i}+\frac{1}{i+1}£©$=$n+1-\frac{1}{n+1}$£®
Èô?n¡ÊN*£¬$¦Ë-\frac{3}{n+1}¡Ü\sum_{i=1}^n{\sqrt{1+\frac{1}{a_i^2}+\frac{1}{{a_{i+1}^2}}}}$£¬
Ôò$¦Ë-\frac{3}{n+1}¡Ün+1-\frac{1}{n+1}$£¬¼´$¦Ë£¼n+1+\frac{2}{n+1}$£®
¡ßµ±n=1ʱ£¬$£¨n+1+\frac{2}{n+1}£©_{min}=3$£¬
¡à¦Ë£¼3£®
µãÆÀ ±¾Ì⿼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬¿¼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬ÑµÁ·ÁË´ý¶¨ÏµÊý·¨ºÍÁÑÏîÏàÏû·¨ÇóºÍ£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | an+1-a | B£® | n£¨a+1£© | C£® | na | D£® | £¨a+1£©n-1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 4.1 | C£® | 4.2 | D£® | 4.3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=sinx | B£® | y=-|x+1| | C£® | $y=ln\frac{2-x}{2+x}$ | D£® | y=$\frac{1}{2}$£¨2x+2-x£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-2£© | B£® | £¨-2£¬0£© | C£® | £¨0£¬1£© | D£® | £¨1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com