精英家教网 > 高中数学 > 题目详情
已知向量
a
=(1,2),
b
=(2,-2).
(1)设
c
=4
a
+
b
,求(
b
c
a

(2)若
a
b
a
垂直,求λ的值.
分析:(1)由向量
a
=(1,2),
b
=(2,-2),知
c
=4
a
+
b
=(4,8)+(2,-2)=(6,6),由此能求出(
b
c
a

(2)
a
b
=(1,2)+(2λ,-2λ)
=(1+2λ,2-2λ),由
a
b
a
垂直,知1+2λ+2(2-2λ)=0,由此能求出λ的值.
解答:解:(1)∵向量
a
=(1,2),
b
=(2,-2),
c
=4
a
+
b
=(4,8)+(2,-2)=(6,6),
∴(
b
c
a
=(12-12)
a
=0•
a
=
0

(2)
a
b
=(1,2)+(2λ,-2λ)
=(1+2λ,2-2λ),
a
b
a
垂直,
∴1+2λ+2(2-2λ)=0,
解得λ=
5
2
点评:本题考查平面向量的坐标运算,是基础题.解题时要认真审题,注意数量积判断两个平面向量的垂直关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
为坐标原点),求向量
OB

(2)若向量
AC
与向量
a
共线,当k>4,且tsinθ取最大值4时,求
OA
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角为锐角,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α终边上一点P(-3a,4a),且a≠0,那么cosα=-
3
5

③函数y=cos(2x-
π
3
)
的图象的一个对称中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ为实数,且(
a
b
)∥
c
,则λ=2
⑤设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=-3
其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,则x的值为
±2
±2

查看答案和解析>>

同步练习册答案