(本题满分14分) 设公比为正数的等比数列
的前
项和为
,已知
,数列
满足
.
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)是否存在
,使得
是数列
中的项?若存在,求出
的值;若不存在,请说明理由.
(Ⅰ)
,![]()
(Ⅱ)当t=-1或t=-2时,即m=5或m=6时,
是数列
中的项
【解析】解:(Ⅰ)设
的公比为q,则有![]()
则
,
.
即数列
和
的通项公式为
,
. ……6′
(Ⅱ)
,令
,所以
,
如果
是数列
中的项,设为第
项,则有
,那么
为小于等于5的整数,所以
.
……4′
当t=1或t=2时,
,不合题意;
当t=1或t=2时,
,符合题意.
所以,当t=-1或t=-2时,即m=5或m=6时,
是数列
中的项. ……8
思路分析:第一问利用已知的项的关系式联立方程组可知公比,和首项,求解得到通项公式。
第二问中,
,令
,所以
,
如果
是数列
中的项,设为第
项,则有
,那么
为小于等于5的整数,所以t=-2,-1,1,2
所以,当t=-1或t=-2时,即m=5或m=6时,
是数列
中的项.
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com